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In Architectural Heritage, the masonry’s interpretation is an essential instrument for analysing the construction phases, the assessment
of structural properties, and the monitoring of its state of conservation. This work is generally carried out by specialists that,
based on visual observation and their knowledge, manually annotate ortho-images of the masonry generated by photogrammetric
surveys. This results in vector thematic maps segmented according to their construction technique (isolating areas of homogeneous
materials/structure/texture or each individual constituting block of the masonry) or state of conservation, including degradation areas
and damaged parts.

This time-consuming manual work, often done with tools that have not been designed for this purpose, represents a bottleneck in
the documentation and management workflow and is a severely limiting factor in monitoring large-scale monuments (e.g.city walls).
This paper explores the potential of AI-based solutions to improve the efficiency of masonry annotation in Architectural Heritage.
This experimentation aims at providing interactive tools that support and empower the current workflow, benefiting from specialists’
expertise.
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1 CONTEXT AND AIMS

In the Architectural Heritage (AH) domain, survey-based models and representations of material structures are key tools
to address the safety assessment, restoration, and consolidation. The first documentary source for studying historical
architectures is the geometry of the building and its construction elements. Geometrical features form the basis of
every operation of conservation aiming at preserving the material and immaterial heritage values, namely the historical
building and the traditional body of knowledge and craftsmanship that contributed to its survival over the centuries.
Traditional geometric surveys and more innovative techniques allow for a complete and extensive metric documentation
and knowledge of the AH at different levels of detail and scale, depending on the scope [3].

Fig. 1. An ortho-image of an historical architecture (city walls of Pisa, Vittorio Veneto A area) segmented in semantic classes
representing construction techniques, and their related per-class coverage estimation.

In particular, 2D and 3D photorealistic representations of external masonry surfaces, coming from photogrammetric
surveys, allow archaeologists, engineers and conservators to investigate and document the composition, organisation,
construction phases and damage of walls. The survey of historical wall surfaces is of particular interest in structural
engineering to predict the capability of the construction to withstand external actions. This is sometimes preferable
to direct experimentation on masonry panels that is difficult to perform [23], generally expensive, and not always
representative of the whole structure. Ancient masonry constructions are often the product of century-old series of
transformations that affect the structural homogeneity and the flow of internal forces within the structure. The wall
texture bears signs of these changes, as well as past collapses and alterations [11], and may reveal the quality of the
masonry and its attitude to crumble during seismic shaking [4, 6]. Furthermore, the strength of the masonry material
can be derived using, from the literature, qualitative and quantitative indicators based on the knowledge of materials
and block pattern.

The annotation of historical masonry is understood as a process of association between the graphically represented
element and any relevant knowledge-based information. As a result of a preliminary diagnostic process, the base
representation is covered with a number of patterns, either polygons or regions, and labels that describe the masonry
walls (as shown in Fig. 1). Two kinds of data are usually relevant in the field of AH, namely the characterisation of
construction techniques and the identification of the state of conservation [12].
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Significant features to identify the construction techniques are the materials’ typology, the geometry of blocks, the
filling percentage of joints, and arrangement of units. It is important to remark that a regular arrangement on the
external surface may not correspond to a regular section, which is more often extremely irregular. For this reason, the
investigation of masonry walls should also account for the thickness and type of cross-section, especially for multi-leaf
cases. The same approach is adopted to map degradation, alterations and damage patterns caused by weathering
conditions and adverse events [24]. Regions with homogeneous phenomena are grouped in classes associated to the
presence of vegetation, stains, cracks, rising damp, surface crusts, and spalling of the material.

The characterization of the construction techniques may be performed at two different levels of detail. At the level of
the whole masonry structure, it consists in the detection of areas with homogeneous material and texture in order to
investigate the construction phases and masonry characteristics within the structure [8, 12].
At a finer local level, in areas with a more homogeneous nature, characterization is done by isolating the individual
constituent elements: bricks, stones, mortar. This segmentation allows for the extrapolation of useful information such
as the block shape and size, horizontality of mortar bed joints, and staggering of vertical mortar joints. Besides, the
segmentation of individual blocks is an important source of guidance for physical interventions and consolidation works
on historical masonry walls. For instance, once blocks are outlined and enumerated, they can be correctly reassembled
once they are dismantled or eventually crumbled, ensuring that the rebuilt form reflects the original. Additionally,
tracing the horizontal mortar bed joints may help archaeologists to identify discontinuities, which can be related to
different construction ages, or may provide insights on the occurrence of foundation settlements whereas layers are all
slanted in the same way.
By segmenting the blocks, it is also possible to gather information about the masonry’s mechanical properties through
established methods like the Masonry Quality Index (MQI) [5]. This technique consists in the geometrical observation
of masonry, the accurate tracing of the constructive elements, and the calculation of a numerical index representative
of the masonry quality. The latter is deduced by estimating a set of critical parameters regarding the typological and
constructive characteristics that have a direct influence on the structural response of the masonry building under
investigation. This computed index can also be used to evaluate the mechanical properties of the masonry, namely the
compressive strength, shear strength and Young’s modulus, by applying experimentally derived correlation curves
[5]. The MQI is particularly interesting in analysing AH assets on which structural testing, especially using invasive
or destructive techniques, may not be feasible due to the risk of damaging buildings with high cultural and material
value [6, 11].

The conventional annotation approach is based on the manual drawing of the regions over the mappings and, for
this reason, it is long and time-consuming. This causes a major bottleneck in the pipeline of creating and updating the
documentation, and poses limitations on the ability to manage frequent large-scale monitoring surveys on massive
monuments (e.g. city walls). This problem is becoming more and more evident with the availability of off-the-shelf
photogrammetric tools that allow the creation of surveys with much lower efforts.
Another issue of these methodologies is the lack of software tools specifically designed for this task. Most of this work
is done in image-editing software (like Adobe Photoshop or Illustrator), CAD or GIS tools. 2D CAD tools are probably
overkill for this task, with cumbersome interfaces; and while it is true that GIS tools have been specifically created
to map information on 2D+ domains, they still are more focused on a different granularity (geographical, and not
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architectural).

Nowadays, AI solutions for the 2D semantic segmentation automate the annotation of AH masonry structures
(see Section 1.1), facilitating the processing of large amounts of input data. Modern Convolutional Neural Network
(CNN) could be used to support a specialist in the practical task of tracing the contour of the area he/she is annotating,
and, at the same time, can be employed to automatically segment a whole map, producing a complete annotation
of the AH ortho-image. Our aim is not to create an alternative strategy for the AH masonry annotation, but to
complement the current workflow with AI-assisted interactive tools and techniques. The idea is to provide tools to
support and facilitate the manual annotation, and to automatize some of the large-scale tasks, but always keeping
the human experts in-the-loop. In this way, this improved, faster, annotation process is still compatible with what
today is the standard workflow in terms of methodologies, input and output data, protocols, and the specialists’ expertise.

This paper explores the use of TagLab, a specific AI-powered tool, for the semantic segmentation of orthographic
data in the workflow of interpretation and annotation of ortho-images of historical masonry. TagLab is a complete
software for the semantic segmentation of 2D orthographic images. It has been developed in the context of analysis of
marine biological environments [20, 21] and, given its generality it can be successfully used for assisted tracing of a
generic ortho-image, as it provides high level, content independent, AI-powered tools for the tracing of contours of
entities, and a set of specialized editing tools. Additionally, it can be used to train a semantic segmentation CNN to
automatically trace a new ortho-image for specific classification problems.
These features have been used to test the effectiveness of AI methodologies in this task, and to outline a possible
integration of these assisting tools in the specialists’ consolidated workflow.

1.1 AI-assisted solutions for annotations

In recent years, the performance of convolutional neural networks in the semantic segmentation task has grown
enormously. Their progress has led to the parallel development of several platforms dedicated to the data labelling task.
Among the many commercial software, we mention Supervisely, a web-based solution for the data annotation and
network training, and LabelBox. Generally, labels can be outlined using polygons, bounding boxes, or a points-clicking
approach. Castrejón et al. [9] proposed to speed up polygon tracing using Recursive Neural Network (RNN). However,
drawing a polygon always requires multiple clicks, while bounding box annotations are undoubtedly faster. Starting
from an initial bounding box, a precise object segmentation can be carried out through several methods; most of them
use different declinations of the Mask R-CNN [14].

Papadopoulos et al. [19] demonstrate that the task of selecting 4 extreme points (top, bottom, right, and left) is about
five times faster than drawing an high-quality bounding box around the object and require a lower cognitive workload.
The annotation of an object by picking its extremities takes an average time of around seven seconds. Starting from
the Extreme Clicking approach, Maninis et al. [18] designed an interactive agnostic segmentation model called Deep
Extreme Cut CCN. The Deep Extreme Cut network uses as input a 4-channel data, the RGB object image and a heatmap
which encodes its extremities, and outputs a precise per-pixel label.

A recent click-based solution [13], builds upon a U-Net [22] architecture, scores an exceptional accuracy (between
95%-99% of mIoU) when a high number of clicks (around 20) is given. This model works iteratively; every time a
new click is added, previously masks are given in input, and all the clicks are encoded as an image to improve the
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segmentation. Always exploiting the segmentation masks from previous steps, but employing a lower number of
positive/negative clicks, [16] reaches a remarkable level of accuracy.

Concerning the walls’ segmentation into individual blocks, recent works such as [15] uses the U-Net [22] architecture.
This promising strategy implies that the CNN, known for its applications in medical imaging, is optimized to work on
masonry data.

In this paper, we exploit two different click-based solutions and other advanced editing instruments to speed up the
annotation of objects, as detailed in Section 2.2. Additionally, since there are no publicly available datasets to train a
neural network for stones/bricks segmentation, we implemented a bricks segmentation tool. This tool allows reaching
two goals: to segment individual bricks/stones very quickly w.r.t manual segmentation and to create a training dataset
for the future development of a specific CNN for this task.

2 IMPROVING THE MANUALWORKFLOW

As described in Section 1, the annotation may happen at multiple levels. In this experimentation we will firstly work at
a higher level, on a mapping aimed at the characterisation of building techniques: i.e. isolating and annotating those
areas with homogeneous material and texture. Then, we will work inside those mapped areas, to identify and segment
the individual stones/bricks.

Following the idea of keeping the experts in-the-loop, by providing tools for assisting their mapping task, we wanted
to evaluate how much the use of assisted tracing in TagLab could speed-up the human part of the workflow, with
respect to the use of non-specialized tools like Adobe Illustrator or GIS packages. Solving the speed bottleneck is the
primary concern of this test, but we are also interested in finding out if the resulting annotations are comparable, in
terms of accuracy, with the ones produced with other tools.

As a next step, we tested the use of a segmentation CNN to understand if a completely automatic annotation of this
kind of dataset is indeed possible and, if so, what the performance of the network is. This automatic segmentation could
really speed-up the annotation process, but probably at the price of some accuracy. For this reason, still inside TagLab,
the specialists can use the editing features to correct what has been mis-classified by the CNN.

The two stages of assisted and automatic are interconnected, as the results of the human assisted annotation are
used to train the CNN used in the automatic step.
Ideally, this two-step strategy would perfectly fit in the current annotation workflow, and it would make even more sense
when the input dataset is large. The specialists start with the assisted annotation on some representative ortho-images,
already gaining an advantage in speed due to the use of a specialized tool. When they have enough data, they can train
the CNN on the characteristic of that specific heritage and its specific classes, and then they can automatically annotate
the remaining ortho-images with this newly trained CNN. Finally the result of this automatic segmentation may then
be corrected using the editing tools.

2.1 Dataset

The photogrammetric survey used in this work covers part of the ancient city walls of Pisa: the north side of the
fortification, that was constructed during the XII century, using local materials, techniques and workmanship [2]. The
investigated portion is approximately 2 km long, the average height of the walls is 11 m, and the mean thickness is 2.20
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m. The structure is made of multi-leaf masonry, with two brick and stone outer-leaves and the inner core of rubble
masonry.
Today, the outer side of the town walls is fully accessible and unimpeded, except for localised areas where the sight is
hindered by trees. Conversely, the inner side is almost entirely included in private properties and thus inaccessible.

The dimension and extension of the city walls, as well as the particular relation to environment, required the adoption
of a rapid photogrammetric surveying workflow, particularly in the data acquisition phase, in order to obtain results of
the entire investigated portion in a reasonable time. Photographs were acquired using an iPhone 11 camera having a
resolution of 12MP and a 1/2.55-inch sensor, with GPS on. The distance from the wall ranged between 7 m and 12 m
depending on the available space and presence of trees, roadways, and fences. Photographs were taken in longitudinal
strips with an overlap of 70%, with two bottom-to-top shots wherever the shooting distance was too small to acquire
the whole wall height.
The acquisition was done over several days at different times, to have the most uniform illumination possible, avoiding
too-strong direct light and hard shadows. Data have been processed using Agisoft Metashape to export ortho-images
from the generated 3D models. The number of photos in each ortho-image varies between 15 and 30.
The dataset used in this study comprises nine ortho-images (see Table 1) over a total number of 53, with resolution of
approximately 3 pixels per cm depending on the acquisition distance.

Orthos used in the assisted test and the CNN training
Contessa Matilde A 15 photos, single vertical shot
Contessa Matilde C 30 photos, single vertical shot
Vittorio Veneto A 16 photos, double vertical shot
Vittorio Veneto B 17 photos, double vertical shot
Vittorio Veneto C 17 photos, double vertical shot
Vittorio Veneto D 17 photos, double vertical shot
Vittorio Veneto E 16 photos, double vertical shot

Orthos used in the automatic test
Contessa Matilde B 20 photos, single vertical shot
Vittorio Veneto F 21 photos, double vertical shot

Table 1. Ortho-images used for the assisted and automatic segmentation tests. The images are named according to the road facing
the portion of city walls.

In spite of the heterogeneous appearance of the walls, seven classes have been initially identified to characterise
locally homogeneous areas showing similar construction techniques (Fig. 2). The classes consider the lithology, shape
and dimension of blocks, the presence of mortar, and finally their arrangement. The latter accounts for the organisation
in coursed rows or radial shapes, the even or uneven height of courses, the presence of snecks, and the way units
are overlapped. Among these classes, one concerns brick masonry, five describe stone walls, and one regards mixed
masonry that is typical of infilled openings and reconstruction works with diverse materials. Two additional classes
have been included to map putlog holes and plants (i.e. grasses, bushes and even trees) that hinder the recording of
masonry.
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Fig. 2. Semantic classes of the city walls of Pisa. Not recognizable objects and putlog holes (bottom-right) are two separate classes.

2.2 Tool description

For the semi-automatic and automatic labelling, we used TagLab, an Open Source AI-powered annotation tool designed
to speed up the annotation and the analysis of large ortho-images. TagLab has been developed by the Visual Computing
Lab and is available at the TagLab webpage.
This all-in-one software covers the entire data labelling and training lifecycle: the dataset preparation, the network
training, and the validations of predictions. TagLab integrates different automation degrees (manual, assisted, fully
automatic labelling), enabling users non-expert in machine learning to create their annotated datasets and models for
automatic image segmentation.

TagLab implements two AI-assisted interactive annotation tools: the 4-clicks tool, based on the Deep Extreme Cut
CNN [18], and the positive/negative clicks tool, based on the CNN recently presented in [16]. Both models have been
fine-tuned to works on jagged-shaped objects, exploiting a manually labelled, highly accurate dataset. Using the 4-clicks
tool, the user traces the objects’ boundaries by indicating the four extreme points (Fig. 3). With the positive/negative clicks
tool, the user outlines an object’s by picking an arbitrary number of inner (positive) and outer (negative) points. In most
cases, a single internal point is sufficient to segment an area (Fig. 4). This last tool works both as a tracing tool, creating
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a new segmented entity, and as an editing/refining tool, adding and removing pieces from an existing segmented entity
(Fig. 4). These two intelligent resources can speed up the segmentation of a large number of objects. However, for ex-
tremely complex cases, TagLab also offers a manual per-pixel tracing tool that gives the user full control over the outlines.

Fig. 3. The 4-clicks segmentation tool in action. (Left) The user marks the extreme points of the area to be segmented helped by the
cross-cursor. (Middle) The Deep Extreme Cut CNN automatically traces the boundaries. (Right) The Refinement tool can then be used
to obtain a more precise segmentation.

Fig. 4. The positive/negative clicks tool in action. A single internal click is often enough to segment a brick (Top). The tool also allows
the user to correct an existing segmentation placing negative clicks (to exclude regions) in red and positive clicks (to include regions)
in green (Bottom).

A set of image-processing tools are then available to refine, modify and merge/split/carve the segmented areas. The
Refinement tool improves the accuracy of jagged boundaries implementing a version of the graph-cut segmentation
algorithm [7]. The Edit Border tool allows the manual adjustment of boundaries simply by scribbling pixel-level curves
intersecting the area being edited. TagLab automatically snaps the beginning and the end of each curve on the old
Manuscript submitted to ACM
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boundaries, filling the inner pixels and removing the outer ones. Based on simple morphological operations on binary
masks, this custom tool ensures the precise editing of borders in short times.

After the user has annotated a dataset specific for its needs, the Train-Your-Network feature may be used to train a
new classifier specialized for this specific annotated data, with TagLab taking care of all the steps of data preparation.
To generate this specialized classifier, TagLab uses a DeepLab V3+ architecture [10]. Introduced by Le Chen et al. in
2018, it is still one of the best performing semantic segmentation network in terms of accuracy. This CNN follows
an “encoder-decoder” structure, using a ResNet-101 as a feature extractor, and natively adopts sparse convolutions to
increase neurons’ receptive fields: this avoids the input resolution downgrading by features pooling operations.
After the training, the users can evaluate the performance of the specialized classifier using numerical and graphical
feedback, and decide if the model needs more tweaking or it is ready to be used.
The specialized classifier can be used in TagLab to infer predictions on new images (on a single ortho, or in batch on
large datasets). These predictions may then be manually corrected by the user with the same AI-assisted and image
processing tools described above, reaching a segmentation accuracy comparable with human experts.
In this human-in-the-loop approach, the user retains full control over each step, fully exploiting his knowledge of the
field, but at the same time is assisted by automatic procedures that speed-up its annotation/correction work or that
automatize cumbersome tasks.

Finally, TagLab automates the extraction of measurements from annotated images (see Fig. 1), the exporting of
tables and histograms, the comparison with multi-temporal inspections, and the use of co-registered DEM information
when available. Typically, these workflows require the use of multiple software applications and a computer-science
background.

2.3 Semantic Classes - Assisted annotation

To evaluate the assisted annotation’s effectiveness, we worked with a specialist that already traced other ortho-images
of the same city walls using Adobe Illustrator. After a brief training, the specialist was able to trace the ortho-images
independently.

The annotation task exploited the 4-clicks tool, that helps the user in the quick outlining objects such as vegetation,
putlog holes, and arches with minimal input (see Fig. 3).
This tool works well on "objects", i.e. elements with a clear boundary, but it does not work on large areas, sometimes
unbounded, like portions of walls belonging to a class. For this reason, we introduced in TagLab a specific tool for
annotating large regions: the Watershed tool. The user roughly mark-out areas using scribbles, the tool then applies an
adaptation of the watershed segmentation algorithm to segment them (see Fig. 5).
Where necessary, the results of both these tracings tools can be locally corrected using the Refinement and Edit Border

tools. The combination of these specialized tools ensured an expedited annotation work.

2.4 Semantic Classes - Automatized annotation

After the experimentation with the assisted tools, the next step was focused on the automatic segmentation process. For
the model optimization, we use the ortho-images that were manually segmented with the semi-automatic pipeline. The
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Fig. 5. TheWatershed tool in action. The azure and cyan scribbles mark two areas belonging to specific classes, while the grey scribble
marks a “background” area to be ignored. The watershed algorithm transforms the scribbles into segmented areas.

input orthos come from different reconstructions, each one at a slightly different scale. As the pixel size is crucial informa-
tion to reduce the visual variance and improve the classification performance, all orthos are re-scaled at 1 𝑝𝑥 = 2.645 mm.

TagLab allows exporting training datasets by slicing large images. During the export, the image and the associated
labels are clipped into tiles and saved in separate folders following the partition in three sets: training, validation,
and test. In this set-up, we test the CNN performance directly on new ortho-images instead of using a subset of the
training data (so, we create only the training and validation sets). Positive performance on new data demonstrates the
model’s ability to generalize the learned features. TagLab implements different image partition strategies; since classes’
distribution is relatively uniform in the longitudinal direction, we choose a left-to-right partition. The seven scaled
ortho-images are subdivided into large overlapping tiles of 1026 × 1026 pixels (scan order: left to right, top to bottom),
ending with 1049 labelled tiles; 212 of them are reserved for validation.

We perform the geometric augmentation adding small translations and a random scale between +25% − 10%. After
the augmentation, tiles are center-cropped at a resolution of 513 × 513 pixels, the CNN’s input size. The online input
normalization subtracts to each tile the dataset per-channel average value.
All the pre-trained weights of the DeepLab were let unfrozen, and the learning rate was set lower than the one used
during the actual training. Allowing just small updates of weights contrasts the forgetting of high-level features. As an
optimizer, we use the Quasi-Hyperbolic Adam optimizer [17] with adaptive learning rate decay, an initial learning rate
of 10−5, and an L2 penalty of 10−4. We run the model for 110 epochs and a batch size of 32.

Per-class frequencies vary a lot. The BRICK class pixels represent the 7.02% of the total, while STONE 01, the majority
class, about the 50%. There are other below-represented classes: the PUTLOG HOLES, with only the 0.51% of pixels,
and the Bush (bush and caper bush) with the 3.33%. We trained our model on the BRICK, STONE 01, STONE 02, STONE
03, STONE 04, NR, and PUTLOG HOLES classes. We discard the MIXED and ARCH classes that are too severely
unrepresented in the training dataset.

We mitigate the class imbalance following a cost-sensitive approach, acting on the loss function. We compared the
performance using a Weighted Cross-Entropy (WCE) loss and a Focal Tversky [1] (FT), that auto-balance the classes
while training. The model minimizing the FT perform significantly better in term of accuracy and training stability. The
model fine-tuning required approximately 9ℎ using a GPU RTX 2070 with a RAM of 6GB.
Manuscript submitted to ACM
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2.5 Individual Blocks - Assisted annotation

As detailed in Section 1, after obtaining a segmentation of the masonry structure in its semantic classes, it is possible
to work at a finer level, and annotate each individual stone/brick inside each semantic class macro-area. Also in this
part of the experimentation, our aim was to test the effectiveness of the assisted tools available in TagLab, and how
to effectively fit them in the existing manual pipeline. The change in granularity, cardinality and size of the areas to
annotate required a change in the tools used. While tracing few elements using the 4-clicks and positive/negative clicks

tools is definitely possible and effective, this strategy does not scale up well for larger areas, where there might be
thousands of individual building blocks to trace. For this reason, we introduced in TagLab a specialized element-tracing
tool, the bricks segmentation tool (see Fig. 6) that quickly segments individual bricks/stones over a large area. The
individual constructive elements may exhibit very different shapes, sizes, and visual aspects; some blocks can be small
with irregular shapes, even rectangular bricks may vary a lot in sizes in the same area, and so on. To take into account
these differences, the bricks segmentation tool provides two dedicated algorithms: one more effective for blocks with a
more rectangular shape, and another one for blocks with a more irregular one. The user should choose an approximate
value for the minimum and maximum distance between the individual elements (easy measurable through the ruler
tool) and choose between the two different image processing algorithms. A single thresholding slider helps the user to
adjust the algorithm to the different constructive elements. Fig. 6 shows an ideal thresholding output; each brick/stone
is marked with one/two red points. The position of these points is estimated using the edges extracted by one of the
dedicated algorithms (also the extracted edges are shown in the output preview). TagLab uses those seed points as
positive inputs for the positive-negative clicks CNN and generates the negative click taking into account the given
distances between elements, outputting the accurate segmentation of the wall into single constituents (see Section 3.2).
The resulting segmentation of individual blocks can eventually be refined using interactive editing tools. The whole
assisted process, when compared to the manual annotation, is considerably faster.

3 RESULTS

3.1 Semantic Classes

We tested the assisted annotation pipeline’s performance by comparing Illustrator and Taglab on the labelling of the
ortho-image Vittorio Veneto A. If we do not account for high accuracy, the manual tracing of the boundaries of objects
like vegetation and putlog holes takes approximately 15 minutes on Illustrator, while only 9 minutes on TagLab thanks
to the 4-clicks tool. The overall annotation time was 40 minutes with TagLab and about 1 hour and a half with Illustrator.
A significant advantage of using TagLab derives from the Refinement and Edit Border tools that allow boundaries to be
more accurate in less time (see Fig. 7), whereas Illustrator has less flexible editing options that increase the editing time.
Additionally, Illustrator does not ensure lines to be closed; therefore, further changes are required to create regions and
assign a filling pattern associated with the semantic classes.

To evaluate the automatic pipeline, we considered two unlabelled ortho-images (Vittorio Veneto F and Contessa

Matilde B), and we compared the model performance to the two respective human-labelled ground truths. Ground
truths were created by annotators running the fully automatic classifier and then editing the predictions through the
image processing tools of TagLab. This strategy allows us to measure both the network performance and the time
required to correct the predictions. Fig. 8 and Fig. 9 show the fully automatic prediction of masonry classes exported as
a label map. TagLab visualizes labels as polygons superimposed over the ortho-image (Fig. 9).
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Fig. 6. The bricks segmentation tool in action. This tool is applied to single semantic areas; in this image to the STONE 01 class. Once
the measurements have been provided, the user selects the appropriate algorithm, in this case the one for more regular bricks, and
adjusts the threshold until obtaining one/two red points per brick. The results of this parameters are visible in Fig. 12

Fig. 7. Segmentation of a caper plant. On left: Adobe Illustrator, on right: TagLab. As explained in Section 2.3, the assisted annotation
tools of TagLab allow the tracing of more accurate boundaries in less time.

The model reached an accuracy and a mIoU of 0.974 and 0.960 on Vittorio Veneto F and of 0.985 and 0.972 on
Contessa Matilde B. Fig. 10 reports the normalized confusion matrix, Fig. 11 visualizes the map of human per-pixel
editing.

As visible in Fig. 11-bottom, in the Vittorio Veneto F ortho-image, the STONE 03 class is misclassified with STONE
02 (lower portion). This misclassification error might be due to the low frequency that the STONE 03 class has in the
Manuscript submitted to ACM
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Fig. 8. Automatic masonry predictions on a new unlabelled ortho-image Contessa Matilde B, as it appear in the TagLab interface after
the automatic classification.

Fig. 9. The Vittorio Veneto F ortho-image and the automatic masonry predictions map exported from TagLab as an image.

training dataset. About the other classes, most of the outliers clusters on the boundaries of the objects. The smoother
appearance of predicted boundaries is a typical effect of the CNN-based segmentation due to several factors, including
the features maps’ degradation. Still, the boundaries’ accuracy falls below the tolerance of this type of analysis. The
Contessa Matilde B misclassified areas, visible in Fig. 11-top, are of two different types. Blue and Orange areas, detected
respectively as belonging to STONE 03 and BRICK classes, actually belong to the MIXED class; however, the MIXED
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Fig. 10. The confusion matrix of Vittorio Veneto F (left) and Contessa Matilde B (right). We remark that the ground truth was obtained
by editing the automatic predictions; so in Contessa Matilde B, the annotator evaluated the annotation of the NR class totally correct.
STONE 03 and STONE 04 classes were not present in the test ortho-images.

Fig. 11. Pixels edited by users on the automatic labelling of Vittorio Veneto D (top) and Contessa Matilde B (bottom). This map
represents the union of per-class false positives and false negatives.

class was not included in the training. Finally, yellow pixels have been mistakenly considered PUTLOG HOLES while
they actually were missing stones.

The editing of the three automatized annotations took approximately 20 minutes per image. It mainly concerned the
redefinition of some of the boundaries between the stone classes and erroneous classes’ substitution with the correct
one.
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3.2 Individual Blocks

The availability of multiple tracing and editing tools played an important role in improving this tedious manual task. The
bricks segmentation tool succeed in the majority of the semantic areas, while the few missing or inaccurate elements can
be rapidly edited using the positive/negative clicks tool. To facilitate the ortho inspection, TagLab allows for activating a
grid (of assignable size and position) with cells that can be marked and annotated, to keep track of the areas already
visited or edited.
In terms of speed and scalability, the bricks segmentation tool proved to be effective. In Fig. 12, of the Vittorio Veneto
D map, the tool segment 1839 stones, over a surface of around 176 square meters. Once the right thresholding value
has been provided, the automatic tracing took around 10minutes, a vast improvement over a completelymanualmapping.

The resulting segmentation could directly be used for an autoptic examination and measurement of the masonry,
inside Taglab. The visualization of the segmented elements over the orthoimage helps the identification of discontinuities
in the arrangement of units and those areas where the geometry of blocks is locally different with respect to the rest of
the semantic class. The detection of these variations may often be hard, especially when conducting rapid surveying
or when the close scrutiny of the whole surface is challenging due to logistic issues (e.g., on the top of city walls).
Nonetheless, their identification and analysis are usually significant for fully understanding the construction process
and hypothesizing the presence of the alterations, thus orienting archival evidence.

Along with providing rapid and accurate results, TagLab ensures a greater usability by enabling the extrapolation of
significant numerical data from segmented masonry walls. Specialists often rely on a series of values calculated over
the segmented elements, such as statistics for the height, width, and aspect ratio of the stones; tracings of the individual
rows of elements; detected discontinuities of the layout. As the segmented bricks/stones are stored in TagLab as vector
data, all these quantities can be easily generated: an example are the statistics of the blocks’ size shown in Fig. 13. For
each semantic class, the histogram correlates the area of elements identified for each class (in 𝑐𝑚2) on the abscissa
with the number of elements on the ordinate. We can easily state that the dimensions of blocks in the four masonry
classes are quite diverse, with the elements tagged as BRICK and STONE 02 having a smaller area with respect to the
others. Their distribution is left-skewed, suggesting a greater uniformity in the dimensions. For instance, bricks are
characterised by peak values ranging between 90-150 𝑐𝑚2, which are realistic since the wall portion is formed laying
headers and stretchers and bricks were usually produced in standard shapes even if handmade.
The dimension of blocks in the classes STONE 01 and STONE 04 present more disperse values with a roughly symmetric
distribution. STONE 04 covers a smaller portion of the wall (and the ortho) under investigation, hence the number of
units is reasonably lower than other classes. The histogrammakes it possible the identification of outliers and long-tailed
data to be compared with the real appearance of the wall. Numerical data may eventually be used as corroborative
evidence for the autoptic examination if the blocks associated with these values tend to be spatially localized in a limited
portion of the ortho.

4 CONCLUSIONS AND FUTUREWORK

The results of this experimentation are certainly positive. AI-based tools can be used in this field to support the
specialists’ work without disrupting their consolidated workflow and providing a relevant speed-up and a satisfactory
accuracy of the mapping.
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Fig. 12. The semantic class STONE 01 covers 176 square meters in the Vittorio Veneto D map (Top). The bricks segmentation tool traced
1839 stones for this area (Bottom). Most of the stones are correctly marked; the missing or partially-traced bricks can later be fixed by
using the positive/negative clicks tool.

Fig. 13. The bricks segmentation tool automatically traced 6169 bricks in the the ortho Vittorio Veneto A, working on the STONE 01,
STONE 02, STONE 04 and BRICK semantic classes, previously detected in Fig. 1. STONE 02 has hardly detectable bricks due to their
small size and the white mortar’s presence that confounds the outlines. The histogram shows the area of elements identified for each
class (in 𝑐𝑚2) on the abscissa while the ordinate reports the number of elements.

The assisted annotation approach was able to speed up considerably the manual drawing of boundaries, usually
performed with conventional software tools. The AI-powered 4-clicks and positive/negative clicks tools for tracing areas,
as well as the Refinement and Edit Border tools for modifying them, proved to be extremely effective in reducing the
annotation times, as shown in the tests. TheWatershed tool needs to be used carefully to output correct boundaries as it
is not sensitive to changes in the image pattern. To accomplish the same task in the future, we plan to introduce a tool
inspired by the one-shot texture segmentation [25], customized to work on masonry annotation. The specialized bricks
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segmentation tool worked fairly well, allowing to segment the blocks of a large areas of the masonry in a single step.
However, some manual tweaking of parameters remains necessary. Given the vast speedup, we didn’t deem necessary
the execution of extensive tests. Consider for example that the annotation of the STONE 01 class (Fig. 12) involves
the tracing of almost two thousands entities: something that would have required around 10-15 hours (20-30 secs per
element with no interruption) instead of just 10 minutes with the proposed system.
By the joint use of the bricks segmentation tool and the interactive user corrections (through the positive/negative clicks
tool), we are able to produce a clean bricks segmentation dataset in a reasonable time.
In the future, we plan to optimize an instance segmentation network to accomplish the segmentation of individual
stones/bricks in a fully automatic way.

The automatic segmentation of semantic classes achieved excellent results. The architecture and training methodol-
ogy were appropriate for optimizing a semantic segmentation model to partitioning masonry according to construction
techniques. To improve the results’ accuracy, we plan to extend the model to the remaining two classes MIXED and
ARCH, adding new positive samples in the training dataset. To summarize, when annotating semantic macro-areas in a
single map, we can report the following significant time savings: we need one hour and a half using Illustrator, 40 min-
utes using only the TagLab assisted solutions, and 20 minutes editing the automatic predictions. Additionally, the use of
TagLab improves the accuracy of boundaries and offers the simultaneous estimation of somemetric quantities (see Fig. 1).

Another common type of analysis in this field is the mapping of degradation and damage patterns, which we will
automatically perform in the future. This task is certainly trickier, as phenomena such as cracks, stains, and grime
streaking may cross over different underlying materials/texture.

TagLab is a flexible platform that supports multi-modal analysis from different sensors. The current version loads
RGB images and co-registered DEMs. Still, its structure also makes it possible to add additional channels, such as
infrared, that could better distinguish structural and extraneous elements such as plants.

ACKNOWLEDGMENTS

This work has been partially supported by the Innovation for Data Elaboration in Heritage Areas - IDEHA project (code
number ARS01_00421), National Research Program, MIUR.

REFERENCES
[1] Nabila Abraham and Naimul Mefraz Khan. 2019. A novel focal tversky loss function with improved attention u-net for lesion segmentation. In 2019

IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019). IEEE, 683–687.
[2] Marco Giorgio Bevilacqua, Costantino Caciagli, and Cristina Salotti. 2011. Le mura di Pisa: fortificazioni, ammodernamenti e modificazioni dal XII al

XIX secolo. Edizioni ETS.
[3] G. Bitelli, C. Balletti, R. Brumana, L. Barazzetti, M. G. D’Urso, F. Rinaudo, and G. Tucci. 2019. The GAMHer research project for metric documentation

of cultural heritage: current developments. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
XLII-2/W11 (2019), 239–246. https://doi.org/10.5194/isprs-archives-XLII-2-W11-239-2019

[4] Anna Boato and Sergio Lagomarsino. 2010. Stratigrafia e statica. In Archeologia dell’architettura, Gian Pietro Brogiolo (Ed.), Vol. XV. All’Insegna del
Giglio, 47–53.

[5] Antonio Borri, Marco Corradi, Giulio Castori, and Alessandro De Maria. 2015. A method for the analysis and classification of historic masonry.
Bulletin of Earthquake Engineering 13, 9 (2015), 2647–2665.

[6] Antonio Borri, Marco Corradi, and Alessandro De Maria. 2020. The Failure of Masonry Walls by Disaggregation and the Masonry Quality Index.
Heritage 3, 4 (2020), 1162–1198.

Manuscript submitted to ACM

https://doi.org/10.5194/isprs-archives-XLII-2-W11-239-2019


18 Pavoni et al.

[7] Y. Y. Boykov and M. . Jolly. 2001. Interactive graph cuts for optimal boundary amp; region segmentation of objects in N-D images. In Proceedings
Eighth IEEE International Conference on Computer Vision. ICCV 2001, Vol. 1. 105–112 vol.1. https://doi.org/10.1109/ICCV.2001.937505

[8] Gian Pietro Brogiolo and Paolo Faccio. 2010. Stratigrafia e prevenzione. InArcheologia dell’architettura, Gian Pietro Brogiolo (Ed.), Vol. XV. All’Insegna
del Giglio, 55–63.

[9] L. Castrejón, K. Kundu, R. Urtasun, and S. Fidler. 2017. Annotating Object Instances with a Polygon-RNN. In CVPR. 4485–4493. https://doi.org/10.
1109/CVPR.2017.477

[10] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig Adam. 2018. Encoder-Decoder with Atrous Separable Convolution
for Semantic Image Segmentation. CoRR abs/1802.02611 (2018). arXiv:1802.02611 http://arxiv.org/abs/1802.02611

[11] Ludovico Dipasquale, Luisa Rovero, and Fabio Fratini. 2020. Ancient stone masonry constructions. In Nonconventional and Vernacular Construction
Materials. Elsevier, 403–435.

[12] Francesco Doglioni. 2010. Leggibilità della costruzione, percorsi di ricerca stratigrafica e restauro. In Archeologia dell’architettura, Gian Pietro
Brogiolo (Ed.), Vol. XV. All’Insegna del Giglio, 65–79.

[13] Marco Forte, Brian Price, Scott Cohen, Ning Xu, and François Pitié. 2020. Getting to 99% Accuracy in Interactive Segmentation. arXiv preprint
arXiv:2003.07932 (2020).

[14] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross B. Girshick. 2017. Mask R-CNN. CoRR abs/1703.06870 (2017). arXiv:1703.06870 http:
//arxiv.org/abs/1703.06870

[15] Yahya Ibrahim, Balázs Nagy, and Csaba Benedek. 2019. CNN-Based Watershed Marker Extraction for Brick Segmentation in Masonry Walls. In
Image Analysis and Recognition, Fakhri Karray, Aurélio Campilho, and Alfred Yu (Eds.). Springer International Publishing, Cham, 332–344.

[16] Anton Konushin Konstantin Sofiiuk, Ilia Petrov. 2021. Reviving Iterative Training with Mask Guidance for Interactive Segmentation. arXiv preprint
arXiv:2102.06583 (2021).

[17] Jerry Ma and Denis Yarats. 2019. Quasi-hyperbolic momentum and Adam for deep learning. In International Conference on Learning Representations.
[18] K.-K. Maninis, S. Caelles, J. Pont-Tuset, and L. Van Gool. 2018. Deep Extreme Cut: From Extreme Points to Object Segmentation. In Computer Vision

and Pattern Recognition (CVPR).
[19] D. P. Papadopoulos, J. R. R. Uijlings, F. Keller, and V. Ferrari. 2017. Extreme Clicking for Efficient Object Annotation. In ICCV 2017. 4940–4949.

https://doi.org/10.1109/ICCV.2017.528
[20] Gaia Pavoni, Massimiliano Corsini, Marco Callieri, Giuseppe Fiameni, Clinton Edwards, and Paolo Cignoni. 2020. On Improving the Training of

Models for the Semantic Segmentation of Benthic Communities from Orthographic Imagery. Remote Sensing 12, 18 (2020), 3106.
[21] Nicole E Pedersen, Clinton B Edwards, Yoan Eynaud, Arthur CR Gleason, Jennifer E Smith, and Stuart A Sandin. 2019. The influence of habitat and

adults on the spatial distribution of juvenile corals. Ecography 42, 10 (2019), 1703–1713.
[22] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-Net: Convolutional Networks for Biomedical Image Segmentation. CoRR abs/1505.04597

(2015). arXiv:1505.04597 http://arxiv.org/abs/1505.04597
[23] M.P. Schuller, R.H. Atkinson, and J.L. Noland. 1995. Structural evaluation of historic masonry buildings. APT Bulletin: The Journal of Preservation

Technology 26, 2/3 (1995), 51–61.
[24] Chiara Stefani, Xavier Brunetaud, Sarah Janvier-Badosa, Kevin Beck, Livio De Luca, and Muzahim Al-Mukhtar. 2012. 3D Information System for the

Digital Documentation and the Monitoring of Stone Alteration. In Progress in Cultural Heritage Preservation, Marinos Ioannides, Dieter Fritsch,
Johanna Leissner, Rob Davies, Fabio Remondino, and Rossella Caffo (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 330–339.

[25] Ivan Ustyuzhaninov, Claudio Michaelis, Wieland Brendel, and Matthias Bethge. 2018. One-shot texture segmentation. arXiv preprint arXiv:1807.02654
(2018).

Manuscript submitted to ACM

https://doi.org/10.1109/ICCV.2001.937505
https://doi.org/10.1109/CVPR.2017.477
https://doi.org/10.1109/CVPR.2017.477
https://arxiv.org/abs/1802.02611
http://arxiv.org/abs/1802.02611
https://arxiv.org/abs/1703.06870
http://arxiv.org/abs/1703.06870
http://arxiv.org/abs/1703.06870
https://doi.org/10.1109/ICCV.2017.528
https://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1505.04597

	Abstract
	1 Context and aims
	1.1 AI-assisted solutions for annotations

	2 Improving the manual workflow
	2.1 Dataset
	2.2 Tool description
	2.3 Semantic Classes - Assisted annotation
	2.4 Semantic Classes - Automatized annotation
	2.5 Individual Blocks - Assisted annotation

	3 Results
	3.1 Semantic Classes
	3.2 Individual Blocks

	4 Conclusions and Future Work
	Acknowledgments
	References

