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a b s t r a c t

The computational fabrication community is developing an increasing interest in the use of patterned
surfaces, which can be designed to show ornamental and unconventional aesthetics or to perform as
a proper structural material with a wide range of features. Geometrically designing and controlling
the deformation capabilities of these patterns in response to external stimuli is a complex task due to
the large number of variables involved. This paper introduces a method for generating sets of tileable
and exchangeable flat patterns as well as a model-reduction strategy that enables their mechanical
simulation at interactive rates. This method is included in a design pipeline that aims to turn any
general flat surface into a pattern tessellation, which is able to deform under a given loading scenario.
To validate our approach, we apply it to different contexts, including real-scale 3D printed specimens,
for which we compare our results with the ones provided by a ground-truth solver.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

With the increasing availability of CNC machines and 3D print-
rs, the fabrication of physical artifacts and their visual ap-
earance have become trending research topics in the Computer
raphics community. In recent years, several workflows have
een developed to streamline the digital fabrication process to
vercome material, size , and geometric limitations, and to speed
p the reproduction and the prototyping phase [1]. In addition to
igh-resolution reproductions, new approaches based on stylized
abrication techniques have acquired attention. Hence, the objects
re realized in an artistic manner [2] using a broad spectrum of
echniques to reinterpret the shape but preserve its main geomet-
ic features. The use of surface segmentation and patterns is very
ommon since a target geometry is often not reproducible in the
eal world and needs to be decomposed or simplified due to ma-
erial or manufacturing constraints. Practically, the raw material
s always limited in size and shape; and the manufacturing tools
an usually perform some operations in a prescribed space and
dopt specific tolerances. Fabrication-aware methods include
hese constraints in the earliest phases of geometry definition.
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It quickly became apparent that these techniques could also be
directed towards the production of objects that look or perform in
a desired way, e.g. , when subject to a particular external stimulus
(force, deformation, heat, light etc.). A class of objects exploiting
geometry abstraction to achieve a specific response to an external
stimulus makes use of the so-called mechanical metamaterials.

Mechanical metamaterials are artificial structures that rely on
a specific internal organization of their elements to achieve a
required behavior in terms of deformation, stress or energy [3].
While in general the material’s structure at the micro- or nano-
scale usually determines the macroscopic behavior of an element,
a metamaterial is instead governed by its geometry for a given
constituting material. This feature has expanded the design space
provided by traditional materials and elements, and has shifted
the design problem from the discrete assembly of different ma-
terial to the meso-scale structure design. At the same time, the
possibility of defining a custom geometry within a given volume
or surface has increased the complexity of the design problem,
which in turn requires computational methods to be successfully
performed.

When dealing with metamaterials, the usual design and sim-
ulation workflows are based on the repetition of a representative
element (or families of elements) and on the approach of ho-
mogenization, i.e., in which their mechanical response can be
simplified using low parameters continua models. However, the
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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Fig. 1. Overview of the proposed framework.
apping between the metamaterial, or simply geometric pat-
ern, and the continua space is constrained on one side to small
eometric alterations and, on the other, on simple mechanical
odels; otherwise the problem quickly becomes intractable.
Instead of contributing in the wake of this continua-mapping

ork field, we tackled the problem from a different perspective
y providing a method for generating generic tileable 2D pattern
eometries, which can be arranged heterogeneously over a sur-
ace, and a tool to simulate the generic deformation behavior of
uch patterned surfaces. Our strategy opens up a broader design
pace of flat patterns that can be deformed in 3D, which are
ard to cover using homogenization methods, also overcoming
he pattern geometry limitations of other approaches based on
educed model calibration [4,5]. Restricting the problem to 2D
omains carries significant advantages for the fabrication pro-
ess: the shape can be manufactured in a flat configuration,
mploying common additive and subtractive techniques and an
mple spectrum of materials, such as plastics, wood, etc.
In this paper, we present three main contributions (Fig. 1).

irstly, we provide a method to generate a wide set of flat pat-
erns made of uni-dimensional beam-like segments using a topo-
ogical enumeration algorithm. Secondly, we introduce a single
educed mechanical model whose parameters can be calibrated
o simulate each of these patterns. This model reduction relies
n an efficient beam-like element formulation that outperforms
he simulation time of using an accurate model. Contrarily to
tate-of-the-art strategies [6,7], we do not target only in-plane
eformations but rather out-of-plane bending behaviors and 3D
eformations. Thirdly, we embed our reduced model in a design
ipeline (bottom row of Fig. 1) that is suitable for any generic
nput flat shape (Fig. 1a). Starting from this shape, we derive a
olygonal tessellation (Fig. 1b), in which each polygon can be
illed with any pattern from our set to produce complex assem-
lies with varying aesthetic and mechanical properties (Fig. 1c).
he patterns are replaced with their corresponding reduced mod-
ls (Fig. 1d) to be rapidly simulated under generic loading and
oundary conditions (Fig. 1e). The pattern set complies with me-
hanical and fabrication constraints, and constitutes a palette for
he designer to interactively paint on the tessellated surface. We
alidate our approach on several application scenarios, i.e., tiling
f patterns and accompanying simulations, and on 3D printed

hysical examples.
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2. Related work

Patterns have been used for a long time in art and architecture
for their aesthetic properties. In light of recent advancements in
fabrication technologies, patterns have been extensively applied
in numerous works (see the façades of MuCEM or Texoversum
and the roof of Louvre Abu Dhabi). Several works use ornamental
patterns to approximate a desired 3D shape with discrete tiles [8–
10]. However, patterns are not only used for aesthetic purposes,
but also to obtain a desired mechanical behavior [11,12].

This interplay between mechanical behavior and aesthetics
gave birth to new challenges related to the joint optimization
of material and appearance. These challenges are often entwined
with digital fabrication, which rendered feasible and cheap the
production of highly complex objects with intricate geometric
features. At the same time, patterns with load-bearing purposes
can be engineered up to a small scale. Significant research effort
has been spent on the computational design of mechanical meta-
materials for achieving a desired deformation capacity. Bickel
et al. [13] used solenoid microstructures to expand the deforma-
tion gamut of multi-material compositions. The works in [14,15]
computationally design tileable cubic microstructures which can
exhibit a range of elastic properties. Our pattern generation is
inspired by the construction and filtering of the basic topologies
used in [14], but concerns flat patterns tiled on a surface instead
of cubic structures embedded in a volume.

Flat pieces have particularly appealing properties since they
can be easily transported and manufactured in different sizes
using a wide range of fabrication techniques. A representative
work [4] approximates an input surface using flat parametrized
spiraling patterns. Although this method has been employed to
produce both small-scale and architectural-scale objects [16,17],
the pattern geometry is constrained to a four-arm spiral pattern;
and the reduced representation provided in [4] is only applica-
ble to that specific pattern. We provide both a wide set of flat
patterns as well as their corresponding reduced representations,
which can be for example useful in form-finding optimization
loops.

Other lines of research focus on the design of auxetic struc-
tures. Auxetics are metamaterials that have a negative Poisson’s
ratio and thus expand laterally when stretched. The authors
in [18] allow inextensible materials to uniformly stretch by in-
troducing a trihexagonal cutting pattern onto flat panels. Due to

the regularity of the hexagonal pattern, the fabricated structure
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an deform into an infinite family of surfaces. The method in [19]
nables the spatial variation of the cutting pattern. Thus, they
an uniquely encode the target shape, although their method still
equires external actuation forces for retaining the 3D shape. This
imitation is addressed in [20]. This method proposes a frame-
ork for computationally designing bistable auxetic structures,
hich retain their shape after an initial actuation.
Another line of work focuses on the design of irregular small-

cale structures. The authors in [21] propose a method for gener-
ting irregular auxetic networks, primarily founded on geometric
riteria. The generation of stochastic and irregular microstruc-
ures was previously explored also in [22–25]. Recent works on
rregular structures focus on enabling the smooth variation of
D patterns and their corresponding mechanical properties. Mar-
inez et al. [6] generate 2D irregular tiled geometries computed
rom Voronoi diagrams of regular lattices under star-shaped dis-
ance functions. The resulting microstructures can be interpolated
nd smoothly vary their mechanical properties. Similarly, Tozoni
t al. [7] created a set of parametric rhombic microstructures with
continuous mapping between their geometric parameters and

heir mechanical properties. In [26] a homogenization approach
or model reduction was proposed to reduce the cost of yarn
imulations.
In this context, simulation models are essential to assess the

echanical behavior of pattern arrangements, and can be ex-
remely slow when dealing with complex patterns. To solve this
roblem, a line of work relies on model reduction, e.g. homog-
nization theory [27,28]. The goal of these works is to find the
arameters of a low-resolution discretization that best approxi-
ates the behavior of a more complex one. Although [6,7] pro-
ide homogenized models for pattern tilings, these are only ap-
licable for in-plane scenarios and are not directly applicable to
D.
In this work, we approximate a surface using planar patterns

argeting out-of-plane (3D) deformation of flat materials. With a
imilar scope, Leimer and Musialski [5,29] propose an approach
or decoupling the pattern complexity from its simulation com-
lexity, by encoding the mechanical behavior into a reduced
eometry as well as in the parameters of a physical simulation
odel. Parametric spring-like assemblies are approximated with
reduced set of discrete elastic rods [30,31], as also seen in

lexMaps [4]. Differently from the works [5,29], we provide a
ethod for producing a large pattern variety using a small set
f parameters. Additionally, we provide an approach for approx-
mating each pattern using a single parametric reduced model,
hich results in efficient simulations.

. Method overview

This paper proposes a method for the generation and sim-
lation of flat patterns, as shown in Fig. 2. These patterns are
omposed of a 2D arrangement of edges, which behave like a net-
ork of solid beams. Moreover, they are defined to be embedded

nto generic polygonal domains according to two fundamental
roperties of exchangeability, i.e., any pattern can be embedded
nto any polygon of a generic surface tessellation, and tileability,
ince any pattern can be connected to its adjacent ones.
To provide a fast simulation, we propose a single, parametric

educed model that is able to approximate the mechanical be-
avior of each individual pattern. Using ground-truth simulation
esults, from a set of prescribed loading scenarios applied to each
attern, we fit the reduced model to each pattern. Eventually,
his set of reduced model parameters allows us to implement
n approximate simulation strategy, which is capable of interac-
ively handling very large tessellations, composed of hundreds of
ifferent patterns.
Essentially, our research strategy can be summarized as fol-

ows:
 w
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• we generate a family of flat and tileable 2D patterns us-
ing a topological enumeration strategy. These patterns are
constituted of a network of beams;

• we introduce a method to optimize a reduced mechanical
model to match the deformation behavior of each generated
pattern;

• we develop a design pipeline for tiling a general flat surface
with our patterns. Subsequently, leveraging the computed
reduced models, we simulate the mechanical response of
a patterned tessellation for given loading and boundary
conditions;

• we implement the previous step in a visual tool, providing a
user interface for interactive editing of the desired settings;

• we validate our approach by comparing the mechanical be-
havior of various pattern tessellations against their reduced
model counterparts.

4. Pattern generation

To design a set of flat patterns of large aesthetic and behavioral
variety with the aim of discretely changing their distribution on
the surface as desired, we define two requirements:

• exchangeability, i.e. a pattern can be embedded into any
generic polygon;

• tileability, i.e. a pattern can be connected to its adjacent ones.

We enforce the exchangeability of patterns by design, by
embedding patterns individually into a discrete surface region,
namely a flat polygon. We also enforce tileability by imposing
boundary compatibility between adjacent patterns. Each pattern
is made of a graph-based combination of solid straight beams
sharing endpoints. However, for a specific beams’ arrangement
to be meaningful, its geometry has to fulfill geometric criteria
considering both fabrication and mechanical constraints.

4.1. Pattern enumeration

Searching all possible patterns in a generic polygonal domain
is a computationally infeasible task. However, its complexity can
be reduced by adopting a smaller domain and a finite setup. We
decompose each polygon into a triangle fan tessellation, whose
shared vertex is its centroid. Thus, the basic configuration of
a pattern can be defined on a single base triangle and then
replicated by rotational symmetry around the polygon’s centroid.
We fix a finite number of nodes within the base triangle domain
constituting a set of possible vertices. Finally, we consider all
possible graphs connecting these nodes as candidate patterns.

Given a set of nodes ni ∈ N on a base triangle, we enumerate
all possible graphs gi ∈ G that emerge by different connections
among ni. For varying the complexity and aesthetics of the re-
sulting patterns, different set of graphs gi ∈ G can be obtained by
setting different number of nodes or by modifying their position
on the base triangle. However, the set of nodes must comply
with some basic constraints in order to guarantee tileability and
exchangeability.

With reference to Fig. 3(a), let us divide the base triangle
v0v1v2, in which v0 is the original polygon centroid, into four
regions: the radial edges (colored in orange), the interface edge
(green), the triangle face (light blue), and the triangle vertices
(red). The subset of nodes laying in each region will be subject
to different constraints.

The two radial edges define a unique region, so only pairs of
nodes that are equidistant from the vertex v0 can populate it.
egardless of the number of pairs, this prerequisite avoids the
eneration of unconnected patterns once the graph is replicated
ithin the polygon.
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Fig. 3. Pattern enumeration setup on the base triangle: (a) domain and region
dentification for building the nodes set; (b) our adopted enumeration setup.

The interface edge is a shared element between polygons,
hich can possibly be filled with different patterns. To comply
ith the tileability constraint, every graph gi is required to share
he same nodes on the interface edge. This constraint practically
mplies that the positioning of the nodes has to be symmetric
ith respect to the midpoint. Moreover, all these nodes must
ecessarily be included in each graph gi to guarantee that each
attern is connected to its adjacent. The number and the position
f the subset of nodes on the base triangle face can be freely
efined.
Lastly, concerning the triangle vertices, a distinction should be

ade between the central node v0 and the others. Referring to the
numeration in Fig. 3(a), the vertex v0 has the same properties as
ny face node, and can be part of the graph gi or not. Vertices
1 and v2 are interface nodes and they are subject to the same
onstraints (can be either used both or none of them). In our
etup, their use is restricted due to tileability reasons.
In order to generate a pattern pi, we replicate each triangle’s

raph gi on all the triangles of a polygon by assembling an edge
esh. Each graph gi fits any triangle and fan tessellation since we

ely on barycentric interpolation for replicating the pattern. As a
esult the approach is scale- and shape-invariant, and thus can
e applied even to irregular tessellations. Although the pattern
mbedding strategy works for generic polygons, for the sake of
larity in our illustrations we always use an equilateral triangle,
hich results in a hexagonal fan tessellation.
Since the enumerable patterns is exponential in the number of

odes, in our setup we limit the number of generated patterns.
s shown in Fig. 3(b) we rely on 7 nodes ni on the base triangle:
he v0 vertex (n0), two equally spaced nodes on the radial edges
n1, n2, n3, and n4), one on the triangle face (n5), and a single
nterface node at the midpoint of the edge v1, v2 (n6). Therefore,
very pattern configuration is obtained from a gi including a set of
dges chosen among the ones in Fig. 3(b). An example of pattern
i generated from this setting can be seen in Fig. 4.
In the following, we will denote as P the set of all possible

atterns pi that we generate. As described in Section 4.2, not all
he generated patterns in P will be admissible.
144
Fig. 4. A pattern example generated with a chosen set of edges on the base
triangle. We refer to the graph in the base triangle (a) as base triangle pattern.
For tessellating a polygon with our pattern we use barycentric interpolation and
polar repetition around the polygon’s centroid (b). This produces what we refer
to as the fan configuration of the pattern (c).

Fig. 5. Two base triangle configurations (a) and (b) with two distinct graphs,
which result in the same fan configuration (c). The cause of equivalence is the
radial edges in building the fan configuration.

4.2. Filtering

The patterns must possess geometric properties to be mean-
ingful from both a fabrication and a mechanical point of view. An
a posteriori filtering process identifies and discards non-compliant
graphs. As a result, each graph gi is labeled as valid or invalid,
producing a subset of valid patterns P ′

⊆ P . The conditions
o mark a pattern as invalid are: (i) geometric or mechanical
quivalence, i.e., presence of duplicates and/or inactive sub-parts;
ii) topology irregularity, i.e., intersecting edges and multiple-
onnected components; (iii) unfeasible fabrication details. All of
hem can be expressed as geometric limitations to be adopted for
raphs.

uplicate patterns. One of the desired properties of the pattern
et P ′ is to be composed of unique patterns, avoiding duplica-
tion. Duplicate patterns occur when two different graphs, namely
graphs that connect different nodes on the base triangle, result
in the same fan configuration. Duplicate patterns may be of two
kinds: edge meshes with the same topology and edge meshes
with different topologies resulting in the same shape.

An example of the first one can be seen in Fig. 5. Dupli-
cate edge meshes with the same topology are caused by the
equivalence generated by repeating the graph segments on one
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Fig. 6. Two different base triangle configurations with two distinct graphs (a)
nd (b), which result in the same shape, i.e., same structure (c).

Fig. 5(a)) or the other (Fig. 5(b)) radial triangle edge in assem-
ling the fan configuration. In our setup, we force the enumera-
ion algorithm to not use edges that lay on the right radial triangle
dge (namely {n0, n3}, {n0, n4} and {n3, n4}).
An example of the second kind can be seen in Fig. 6. Dif-

erent topologies that result in the same shape cause duplicate
dge meshes with a mechanical equivalence. Indeed, introducing
ore nodes within a beam does not alter its structural response.
herefore, we do not consider candidate edges that include nodes
ther than its endpoints. For example, the edge {n0, n2} is never
onsidered in the pattern generation (Fig. 6).

angling parts. A graph can be marked as invalid if it builds a
attern that is mechanically equivalent to another one in our set.
owever, apart from the trivial duplicate shape condition applied
n the previous paragraph, another equivalence condition may oc-
ur if parts of the pattern do not contribute to the transferring of
orces. Therefore, these parts are deemed to remain unstressed if
he small contribution provided by their self-weight is negligible.

Mechanically equivalent patterns are produced in two cases.
n the first case, the pattern contains at least a node with valence
ne which will result in dangling edges (Fig. 7(a)). In the second
ase, the pattern contains articulation points, which signal the
xistence of generic dangling component (Fig. 7(b)). The second
ondition is more general and it is therefore sufficient to check
he pattern graph for articulation points to filter them out.

nterface connectivity. Patterns that have no connection to the in-
erface edge are marked invalid, as they will not be connected to
djacent patterns in their final tessellated configuration. Specifi-
ally, we discard all base graphs gi that do not include at least an
dge connected to the interface node n6.

ultiple-connected components. Patterns that do not result in a
ingle connected component are discarded (see Fig. 7(c)).
ultiple-connected components patterns are not significant from
mechanical point of view, since independent (or rigid) move-
ents between parts of the structure are allowed. By also forcing
very base triangle pattern to be connected to its interface (pre-
ious condition), we ensure that any patterned surface form a
ingle connected component.

ntersecting edges. Graphs that include intersecting edges are dis-
arded. By design, our patterns are composed of edges that are
xclusively connected at the nodes of the base triangles. Thus,
uch graphs can be automatically converted into a network of
eam elements. Instead, intersecting edges do not make this
onversion accurate as two intersecting beams would physically
ehave as if they were independent.

abrication constraints. In order to reduce the discrepancies be-
ween simulations and the manufactured pattern’s behavior, the
abricated elements have to be as close as possible to their digital
epresentation. When fabricating such beam-like structures, a
ell-known issue is the accumulation of material at the nodes,
hich results in a local stiffness increase. This effect occurs, for
145
example, if two incident edges are too close to each other, merg-
ing in a unique element with a larger cross section. Moreover,
this effect is amplified due to the fabrication machine tolerances.
Conversely, the model employed in beam simulations and thus
also in this work (see Section 5) is based on uni-dimensional
elements and dimensionless nodes. Thus, the higher the valence
of a node, the higher its stiffness when manufactured. And ac-
cordingly, the higher is the discrepancy from the real behavior
with respect to the simulated one. To cope with this issue, we
filter out patterns having incident edges joining at a small angle
and patterns having high valence nodes. In our experimental
setting, we adopt a minimum angle of 15◦ and maximum valence
of 6.

5. Reduced model calibration

Our pattern set is widely heterogeneous from a geometrical
point of view (see Fig. 2). Simulating such pattern assemblies
can be extremely costly. The simulation cost is linked to the
number of elements, i.e., nodes and edges. Regardless of the
mechanical model employed, the simulation cost grows when
the pattern complexity increases, and the number of tiled pat-
terns increases. We tackle this problem at the pattern level by
proposing a unique reduced model, which provides a generalized
representation of the mechanical behavior of any single pattern
and can approximate it accordingly. The reduced model must
possess the same properties as regular patterns namely, tileability
and exchangeability, such that reduced models can be seamlessly
used in place of their patterns.

Intending to maintain a standard simulation cost for each
pattern, we adopted a reduced model with a constant topology
(Fig. 8). Then, we search for its best geometric and mechanical pa-
rameters to match the mechanical response of each pattern. The
problem of fitting the reduced model parameters to every single
pattern is formulated as a non-linear constrained optimization
problem with respect to several standard simulation scenarios to
provide a general and satisfactory description of each pattern’s
mechanics. The response of the pattern to each simulation sce-
nario is computed by using an accurate yet costly ground-truth
simulation model [32]. Instead, we compute the reduced model’s
response using a simplified linear model [33]. Note that both
mechanical models used in this work use discrete beams mod-
eled as uni-dimensional elements. Each beam endpoint merges
into a structural node and has six degrees of freedom (DOFs):
x, y, z and φx, φy, φz , used to describe translations and rotations,
respectively. The underlying assumption is that every pattern in
P ′, which is stored as an edge mesh, can be converted unequiv-
ocally into a structural model: edges and nodes become beam
centerlines and structural nodes, respectively. Moreover, each
beam is equipped with both geometric and material cross-section
properties. An overview of the mechanical models is available in
the additional material.

5.1. Reduced model overview and characterization

The general objective of a reduced model is to provide a
compressed and simplified representation of a more complex
structural assembly. In the present case, this representation is
composed of a network of beams, a set of cross-section properties
and a linear mechanical solver [33].

The network of beams builds on a globally adaptable unique
topology defined as a hexagonal chain of edges centered in the
centroid of the hexagonal polygon, whose vertices are attached
via edges to the midpoint of each interface edge. In our setting,
the reduced model and the pattern share the same interface
nodes (green nodes in Fig. 8) and their barycenters. In order to
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Fig. 8. Examples of full patterns with their corresponding reduced models.

Fig. 9. We define the reduced model’s geometry as a hexagon with attached
edges at its vertices (light blue). During the optimization of the reduced pattern,
we allow it to change shape in two ways: by altering the inner hexagon’s size
(a), and by allowing it to rotate around its center (b).

describe a large variety of patterns’ behavior, we characterize this
topology with two geometric parameters: R ∈ (0, le

√
3/2), which

escribes the circumradius of the hexagon (Fig. 9(a)), where le
s the length of the polygon’s side; and θ ∈ (−π/6, π/6) which
escribes the rotation of the link edge (Fig. 9(b)). We choose this
eometry for our reduced model by observing three main types
f deformation when the patterns are stretched: a symmetric
eformation (θ ≈ 0, e.g. second row, first column in Fig. 8),
nd a polar rotational deformation in a counterclockwise (θ < 0,
.g. last row, first column in Fig. 8) and clockwise direction (θ > 0,
.g. first row, second column in Fig. 8).
For capturing the pattern stiffness, we introduce mechanical

arameters to characterize the beams of the reduced model. We
ompletely define the beam by selecting 4 parameters: the cross-
ection area of the beam A, the bending inertia values I2 and I3
long the main axes of the beam section, and the torsion inertia
. We fixed a unique Young’s modulus since it results redundant
i.e., it behaves as a scaling factor for the other parameters). We
mpirically found this choice of parameters performing best in
pproximating the patterns’ behavior. Physically, all these pa-
ameters are interrelated and depend on the cross-section type
nd geometry. However, since the reduced model is intended
146
o be solved with the linear Euler–Bernoulli theory, they can
e considered independent variables, broadening the spectrum
f the reduced model behavior across scenarios. Eventually, this
educed model is defined by selecting 2 geometric parameters R,
and 4 cross-section parameters A, I2, I3, J , since all beams in our
educed model share the same cross-section properties.

.2. Simulation scenarios

For the general applicability of the patterns, we propose five
tandard scenarios that cover a wide range of deformations to
bstract the mechanical behavior of the pattern. Our goal is to ac-
ivate the main ways of loading 2D patches, namely stretch, shear,
nd bending, as independently as possible to adopt weighting
trategies in the reduced model calibration phase (Section 5.3).
Axial (Fig. 10(a)) and shear (Fig. 10(b)) are planar scenarios

hat are obtained by fixing two adjacent interface nodes and
y moving the opposite ones. In the axial case, the forces are
irected towards the supports, while in the shear case, the force is
rthogonal. The remaining three scenarios simulate the bending
ehavior and are distinguished by the Gaussian curvature K as-
umed by the deformed shape. An almost cylindrical shape with

≈ 0 is obtained by fixing three consecutive interface nodes
nd pulling the rest in the normal direction (Fig. 10(c)). A K > 0
ome shape is obtained by applying opposite moments on two
airs of opposite interface nodes and forcing the remaining pair of
pposite nodes towards the interior (Fig. 10(d)). A K < 0 saddle-
ike shape is created by applying opposite-deforming moments
nd forces (Fig. 10(e)).
From the five simulation cases described above, we derive a

arger set of simulation scenarios by varying the force magnitude.
e do this in order to evaluate the behavior of the patterns
n a broader force spectrum. We uniformly sample the force
agnitudes by scaling down a maximum value, which is uniquely
efined for each of the five scenarios. These magnitudes are
mpirically set and limit the range of pattern behaviors, used to
alibrate the reduced model, to realistic load cases. Eventually,
or each pattern, the reduced model calibration is performed
onsidering a finite set of sk ∈ S scenarios. Since our reduced
odel calibration is performed on regular hexagons tessellations
aving polar symmetry, the mechanical response will be the same
f in every scenario the geometry is rotated by 60◦. Therefore, to
ompute every reduced model, in-plane rotated patterns are not
ncluded, favorably reducing the number of simulation scenarios
o a minimum.

.3. Optimization framework for calibrating the reduced model pa-
ameters

The parameters of the reduced model x are calibrated from a
omparison between the ground-truth simulation of the pattern
nd the reduced model simulation. This comparison is made
ased on the interface nodes’ displacements for each simulation
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Fig. 10. Standard simulation scenarios adopted in the reduced model calibration: (a) axial; (b) shear; (c) bending; (d) dome; (e) saddle.
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cenario sk ∈ S. For clarity, the quantities related to the pattern
are marked by a p subscript (e.g., dp for the displacement), to
e distinguished from the reduced model for which we use a
subscript (e.g., dr ). For a given pattern we compute its op-

imal reduced model parameters xopt by solving the non-linear
onstrained optimization problem defined as:

xopt = min
x

(E(x)) (1)

.t. Mp · ap + rp = Fk ∀sk ∈ S (2)

Kr (x) · dr = Fk ∀sk ∈ S (3)

x = [A, I2, I3, J, θ, R] (4)

A, I2, I3, J ∈ R (5)

−π/6 ≤ θ ≤ π/6 (6)

0 < R ≤ le
√
3/2 (7)

The objective function E(x) quantifies the error between the
attern and the reduced model node displacements. It depends
n the vector x = [A, I2, I3, J, θ, R], which contains the reduced
odel parameters (defined in Section 5.1) as problem variables.
he cross-section parameters are free to take any real value. In
ractice, to minimize this objective, we limit variables extent
o multiples of the pattern’s constitutive material values in the
ange [0.001, 1000]. Eqs. (6) and (7) define the range of reduced
odel geometry parameters. Eq. (2) expresses the non-linear
tatic equilibrium according to [32], where Mp is the structure
ass matrix, ap is the accelerations vector, rp is residual force
ector and Fk is the force vector of scenario k (which is unique
or both cases). Eq. (3) states the static equilibrium of the reduced
attern adopting the linear beam model [33], where Kr is the
tiffness matrix expressed as function of x.
For the objective function E(x), we require the definition of

n error metric that can be used to evaluate the choice of the
educed pattern variables x. This function is the sum of the errors
k(x̄) of each scenario sk in terms of displacements, for a given
ector of variables x̄:

E(x̄) =

∑
sk∈S

wk · ek(x̄)2 (8)

Each scenario is weighted using a term wk. When simulating
the scenarios, using both the non-linear ground-truth model and
the reduced linear model, the displacement vector for each of the
interface nodes is a 6-dimensional vector made of three transla-
tional components and three rotational components. To compute
the error between these models, we decouple and normalize
the translation contribution ek,trans(x̄) from the rotations ek,rot (x̄).
Additionally, we introduce a distinct weight for either terms wtrans
and wrot , for tuning their importance within the reduced model
calibration:

ek(x̄) = wtrans · ek,trans(x̄) + wrot · ek,rot (x̄) (9)

For computing the terms in ek(x̄), we define the set of pairs
{vp, vr} ∈ Q as the set of matching interface nodes between the
pattern and reduced model, respectively. We compute e as
k,trans

147
the sum of the Euclidean distances over pairs in Q :

ek,trans(x̄) =

∑
{vp,vr }∈Q

dp,k − dr,k(x̄)


max
(∑

vp

dp,k , ϵtrans

) (10)

Where dp,k is the 3-dimensional translational displacement of
the interface vertex vp of the pattern for the simulation scenario
sk. Similarly, dr,k(x̄) is the displacement of the corresponding re-
duced model vertex vr as function of the parameters x̄. To obtain
n error independent from the displacement range, and thus from
he pattern stiffness, this function is normalized with respect to
he sum of norms of the interface vertices’ displacements vp.
o avoid numerical issues for stiff patterns (i.e. with very low
isplacements) the normalization value is clamped to a minimum
hreshold ϵtrans.

For computing the rotational error erot we quantify the error
etween Q pairs as the minimum angle that is needed for their
ocally-rotated frames Rp and Rr to match:

k,rot (x̄) =

∑
(vp,vr )∈Q α(Rp,k, Rr,k(x̄))

max
(∑

vp
α(Rp,k, Rp0), ϵrot

) (11)

Where α(R0, R1) is the angle for rotating an orthogonal frame
0 into another one R1 according to Euler’s rotation theorem. Rp,k
s the local frame of the interface vertex vp in the deformed state
f scenario sk. Rr,k(x̄) is the rotated frame of the corresponding re-
uced model vertex vr as a function of the parameters x̄. Similarly
o Eq. (10), we normalize this function using the sum of angles
(Rp,k, Rp0) between the vertex frames in the deformed state and
he rest frames Rp0. As for the translation error, we also introduce
minimum rotation threshold ϵrot .
For solving the problem of Eqs. (1)–(7), due to the complexity

f our function, we use a derivative-free global optimization
ethod (simulated annealing provided by ensmallen [34]).

. Tiling and interactive tool

All generated patterns and their corresponding reduced mod-
ls can be tiled onto a variety of surfaces. As a first step, these
urfaces are processed with an isotropic triangular remesher.
he dual of the obtained triangular mesh is the polygonal mesh
sed as the base for the tiling. Isotropic triangles produce reg-
lar polygons and uniformly distributed cells, making this step
ompliant with the model reduction strategy. The higher the
egularity of the polygonal tessellation, the more accurate the
educed model simulation will be. Additionally, since our reduced
odel calibration method targets polygons of a specific size, we
ize the polygonal mesh such that its mean edge size matches the
nterface edge adopted in the model calibration.

Subsequently, each polygon tile can be filled with any desired
attern from the subset of valid patterns P ′. Then, any loading
nd boundary conditions can be applied to the polygonal mesh
nd interactively simulated using the reduced models. These con-
itions can also be modified and the patterns substituted. To
urther favor interactivity, we provide the user with a tool to
nteractively create pattern tessellations and set large simulation
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Table 1
The filtering statistics for our pattern enumeration of Fig. 3(b), according to Section 4: the number of edges of the base triangle configuration
gi (E), patterns with E edges in the base triangle (PE ), patterns containing intersecting edges (Inters.), patterns not linked to the interface
nodes (No int. nodes), patterns with multiple connected components (Multip. CC), patterns with at least one articulation point (AP), patterns
having at least one angle smaller than 15◦ (A < 15◦), patterns containing nodes with valence higher than 6 (V > 6) and, eventually, valid
patterns in the P ′ set (Valid).
E PE Inters. No int. nodes Multip. CC AP A < 15◦ V > 6 Valid

2 136 23 55 95 107 5 3 9
3 680 268 165 359 524 73 43 47
4 2380 1442 330 628 1669 489 302 172
5 6188 4774 462 722 3349 1995 1334 429
6 12376 10934 462 570 4438 5548 4131 576
7 19448 18460 330 316 4055 11150 9481 405
8 24310 23873 165 120 2640 16747 16302 154
9 24310 24197 55 28 1228 19167 20632 29
10 19448 19435 11 3 392 16881 18754 3
11 12376 12376 1 0 77 11465 12354 0
F
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Table 2
Weights adopted in our experimental setting.
Scenarios wk wtrans wrot

axial, shear 0.5 1.2 0.8
bending, dome, saddle 1.0 1.2 0.8

cases. This tool imports a polygon mesh on which the user can
‘paint’ the patterns over the polygons. The result is a mapping
between each surface polygon and one pattern (with its accom-
panying reduced model). For a video demonstration of the tool,
the reader is referred to the additional material of the paper.

7. Experimental configuration and results

To demonstrate the applicability of the proposed methodology
or the pattern generation, we adopt the setting depicted in
ig. 3(b). Then, we select a set of surfaces (Fig. 11) which we
essellate using the generated patterns and we run a simulation
everaging the computed reduced models. The accuracy of the
educed solution is assessed by comparing it with the solution
btained from the ground-truth solver.

.1. Pattern generation and reduced model calibration

The set of patterns is generated from all possible graphs ob-
ainable from the configuration of seven nodes of Fig. 3(b). We
dopt a single interface node on the edge midpoint, and a single
ode on the triangle face positioned eccentrically. This simple
onfiguration produces a broad range of patterns’ complexity
ith a limited number of nodes. We obtain a set of 121,652
atterns that, once filtered, become a set of 1824 valid patterns.
he filtering statistics are included in Table 1.
In the experimental setting of model reduction, we adopted

ifferent parameters on an empiric base for the material, size
nd intended use of the patterns to be meaningful. In the error
ormulation for computing the objective function, we use ϵtrans =

.0003 meters and ϵrot = 0.1◦. The cardinality of Q is 6 since we
mbed our base triangle patterns in hexagons.
The weights considered in this setup are listed in Table 2 and

ave been empirically chosen as well to minimize the error. The
calar wk has the purpose of restoring an equal contribution of
ymmetric and non-symmetric scenarios within the optimization
bjective. The scalars wtrans, wrot are set as scenario-invariant
uantities with a general objective of shifting the desired accu-
acy more on translations rather than rotations.

The reduced models are computed from regular hexagons
nscribed in a circle of diameter 0.03

√
3 meters. We input ma-

erial properties that are on average found on plastics to be 3D
rinted [35], namely 1 GPa as Young’s Modulus and 0.3 Poisson’s
148
Fig. 11. Plan view of the surfaces adopted in the experiments (top) and their
corresponding polygonal tessellations (bottom).

ratio. For the patterns, we adopted a square cross-section of
2 × 2 mm that is constant over all the edges of the patterns.
or optimizing our pattern set, we used an Intel I9-7920X @
.90 GHz ×24 CPUs. The average reduced model calibration time
as 1.2 min per pattern, in which the majority of time being used

or computing the ground-truth data. The average optimal objec-
ive value found via our reduced model calibration method was
.7 with a standard deviation of 9.9. For additional information
egarding the parameters used in our implementation we refer
he reader to the Appendix in the supplementary material. As ad-
itional material for each valid pattern we also included its edge
esh, its reduced model geometry and its optimal parameters.

.2. Experiments and validation

We used Instant Meshes [36] for generating almost isometric
riangular meshes, then we retrieve the polygonal tessellation
rom their duals. For consistency, to build any simulation sce-
ario, loads and boundary conditions must be shared between
oth the pattern model and the reduced model. This condition
s fulfilled if they are applied on the interface nodes, which are
hared between patterns and their reduced models. The results
f the experiments are included in Fig. 12 (example A), Fig. 13
example B) and Fig. 14 (example C), each showing a top view
f the tiled patterns and their reduced models, the simulation
etup, and the deformed state for both configurations. The colors
f the polygons in the top views are meant to distinguish different
atterns. Forces are represented as arrows whose size is propor-
ional to their magnitude; boundary conditions are spheres, red
f all DOFs are constrained and green if only the translations are
onstrained.
The outcome of our pipeline is the deformed network of the

educed models. It is important to point out that in the render-
ng, we adopt a constant circular cross-section for all reduced
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Table 3
Error between the reduced model and the ground-truth simulations on all experimental examples. The table shows the bounding box of the starting flat surface
(sizeBB (m)), the maximum displacement norm of the nodes in the ground-truth simulation (distpmax), the maximum distance between an interface node in the pattern
and the corresponding node in the reduced (distmax (m)), the average distance between the interface nodes in the pattern and reduced configurations (distavg (m))
and its standard deviation (distσ ). Then, the same measures computed for the rotation: rotpmax , rotmax (rad), rotavg (rad) and rotσ .

sizeBB (m) distpmax distmax (m) distavg (m) distσ rotpmax rotmax (rad) rotavg (rad) rotσ
Ex. A (Fig. 12) 0.71 × 0.40 0.0444 0.0072 0.0027 0.0252 0.2247 0.0378 0.0278 0.0844
Ex. B (Fig. 13) 1.08 × 0.91 0.0454 0.0042 0.0006 0.0219 0.1101 0.0110 0.0035 0.0803
Ex. C (Fig. 14) 0.80 × 0.64 0.0620 0.0065 0.0011 0.0233 0.2670 0.0241 0.0063 0.0703
Fig. 12. Example A results: pattern tiling and the corresponding reduced
model on top; simulation setup; reduced model deformed shape (blue) and
ground-truth deformed shape (gray).

models because the properties obtained from the calibration are
all different and may not have a physical meaning. To validate
this result, we simulate the tiled patterns within the same setup
using the time-consuming ground-truth solver in [32]. For the
examples A, B and C, the simulation time was 1.9, 4.2 and 6.3 min,
respectively. The corresponding reduced simulation times are 80,
110, and 40 milliseconds, respectively. The error between the two
results is shown in Table 3, in which for all examples we report
the maximum, the mean, and standard deviation values. The error
is computed on the interface nodes, and the translation compo-
nent is distinguished from the rotational component. Overall, the
model reduction strategy adopted in this work demonstrates to
be accurate enough for exploring various geometries and loading
configurations. However, the accuracy diminishes once the dis-
placement range increases, i.e. Example A is less accurate than
others due to the limitations of the linear model to well describe
large deformations.

7.3. Physical tests

To assess the practical utility of the present methodology,
e perform a simple test on 3D-printed cantilever surfaces that
dopt different patterns, whose elements have a constant cross-
ection of 2 × 2 mm. The material used for the actual physical
odels is PLA with a density of 1.24 g/cm3 and stiffness of

E = 2.3465 GPa. We rigidly fixed the specimens on one side and
let them deform under their own weight. In this test setup, we
3D scan the specimens. We repeated this test on two specimens
measuring 18 × 26 cm, tessellated with different densities pat-
terns. We diversify them with respect to their global stiffness and
weight in order to achieve different displacements.

We simulate the experimental response of the specimens with
both the ground-truth solver and the reduced model. In both
149
Fig. 13. Example B results: pattern tiling and the corresponding reduced
model on top; simulation setup; reduced model deformed shape (blue) and
ground-truth deformed shape (gray).

cases, all DOFs are restrained on the fixed side and the weight
is lumped, i.e., considered as concentrated forces on the interface
nodes only. To comply with the real-life material properties, the
optimization of the reduced model is re-computed.

We compare the deformed shapes with respect to the exper-
imental results acquired from the 3D scan, as shown in Fig. 15.
Remarkably, the present methodology proves to be fairly general
and versatile enough to be tailored to real-world needs. Indeed,
the ground-truth and the reduced model are in both cases in
good agreement. A more significant deviation is found between
the ground-truth result and the tested shape. The denser the
patterns, the more evident this effect is. Two or more beams
sharing a node, in fact, result stiffer than any centerline-based
mechanical model can simulate. This effect is caused by the
physical size of the node, which, especially for small angles be-
tween incident beams, behaves like a wide area of almost null
deformation. Being these examples bending-dominant cases, the
reduced model shows the same limitations as the linear simu-
lation model [33] (see Appendix in additional material), more
precisely, the non-shrinkage along the cantilever length.

8. Conclusions

This paper contributes to building a relationship between ge-
ometric graph-based models and their mechanical simulation,
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Fig. 14. Example C results: pattern tiling and the corresponding reduced
model on top; simulation setup; reduced model deformed shape (blue) and
ground-truth deformed shape (gray).

Fig. 15. Physical tests (red) in comparison with deformations of the pattern
dark gray) and the reduced model (blue).

argeting bending-dominant behaviors and 3D deformations. We
ntroduced a novel method to generate a set of patterns via
raph enumeration. The pattern generation constitutes a fairly
eneral framework that can be used to produce a large set of
onfigurations from a truly basic input, and this setup can be
pplied in several contexts. To favor the use of such patterns, we
rovide a strategy for simulating each one with a reduced model
o that the actual patterns can be replaced with them to give
nstantaneous feedback about their deformation behavior. The
odel reduction is obtained through an optimization procedure

hat is valid for a specific material and pattern size.
150
This contribution has been embedded in a design pipeline
starting from a general flat surface, which is then converted into a
suitable polygonal mesh. The mesh can embed the patterns since
they are tileable and exchangeable. In this setup, any loading
and boundary conditions can be applied, and the combination
of reduced models provides a quick approximate solution. To
facilitate design exploration, we developed a graphical tool to
interactively test various examples and possible modifications.

Our findings confirm that the adopted strategy could be useful
for exploring the performance of a desired combination of flat
patterns under a specific regime of displacement. The model
reduction framework exploits a linear model. While this is fast
and accurate for small/medium deformations, applications with
expected large displacements will not be as accurate. Therefore,
based on the target deformation, a different simulation model
may be needed (such as [30]).

The model reduction framework we employed is currently
used for forward simulation, and we did not design it to be used
for inverse design problems. It could be interesting to investigate
if the present framework could be adapted for such a purpose,
i.e., given a flat polygonal tessellation, to find the optimal pattern
distribution to match a target shape under prescribed boundary
and loading conditions.

From a user perspective, it is hard to select patterns to obtain
a precise mechanical property since the employed parameters
are not meaningful as real physical quantities. In fact, an inter-
esting line of further research would be to design a different
reduced model based on more controllable explicit mechanical
parameters. This would allow us to group patterns based on
different macro-mechanical properties providing, for example,
for each pattern, alternative shapes which mechanically perform
equivalently.

Since in our reduced model calibration pipeline we assume a
regular hexagon of a specific size, an error is introduced when ap-
plying the reduced models on (possibly deformed) non-hexagonal
polygons or polygons of different size. A possible approach for
handling this limitation would be to jointly optimize the reduced
models for a range of target edge sizes, deformations, and edge
numbers.
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