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Summary

In the context of tall building design, the tube concept represents one of the most per-
forming systems. The diagrid is the widespread type of tube system and consists of
a diagonal grid of beams that wraps the building, forming a diamond pattern. It per-
forms as lateral bracing and is additionally able to sustain vertical loading through
axial forces. Despite its efficiency, a growing interest is recently observed in alterna-
tive geometries to replace the diagrid pattern and improve the architectural impact
conferred by the building skin aesthetics on the urban environment. The paper pur-
sues the use of a Voronoi mesh, in which the geometry of the cells is steered to
known schemes for the structural design of a cantilever tube structure. The objective
is to mimic a macroscopic structural behavior through a topology and size modifica-
tion of the Voronoi mesh that increases the density for creating resisting paths with
higher stiffness. The paper proposes a novel method Vorogrid for designing a new
class of tall buildings equippedwith an organic-looking andmechanically-sound tube
structure, which makes them a valuable alternative to competitors (diagrid, hexa-
grid, randomVoronoi). Diagrids and hexagrids still remain more efficient in terms of
forces and displacements but are characterized by a more usual appearance, instead
Vorogrid offers more design control and better performances on average with respect
to random Voronoi structures. This method is streamed into a pipeline that includes
grid initialization strategies, geometric and structural optimization to mitigate the
effects of the grid randomness, and structural sizing.
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1 INTRODUCTION

Modern tall buildings are characterized by a large-scale impact
on the urban context and the natural resources their con-
struction and management need. In the design phase, primary
attention is devoted to the global geometry for the building
identity as a signature in the skyline. Then, in a later stage,
the design is oriented on building/structural performances and

material resources optimization. For a given global geome-
try, the external surfaces and specifically their façade patterns
have a prominent role. They are usually the areas where dif-
ferent and sometimes even opposite performance requirements
are synthesized. Furthermore, the designer’s task is to find a
good compromise. For tall buildings, it is common to have
load-bearing members on the external surfaces. Thus, apart
from characterizing the façade aesthetics, they can guarantee
the flow of forces.
The structural design is mostly pushed by the require-

ments of efficiency and sustainability, and by the increasing
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heights these buildings tend to. Concurrently, lateral loads
given by wind and earthquakes become more critical. These
factors have brought innovation and development of several
structural systems (Gunel & Ilgin, 2007), such as the tube
structure (Sarcheshmehpour & Estekanchi, 2021), outriggers
(Kim, Lim, & Lee, 2020), the tube-in-tube (Sarcheshmehpour,
Estekanchi, & Moosavian, 2020), the bundled towers (Lac-
cone, Casali, Sodano, & Froli, 2021), the megaframes Zhou,
Qian, Huang, & Yao (2021), to fulfil strength and stiffness
demands.
Among them, the tube is a widespread structural solution.

One of its derivations is the diagrid system (Moon, Connor, &
Fernandez, 2007), in which a grid of diamond cells replaces the
surface of the tube, hence the name. The edges of this pattern
can span single or multiple floors, but globally they perform as
a diffuse bracing system loaded through axial forces. From a
mechanical perspective, this system is efficient (Asadi&Adeli,
2017) and robust (C. Liu & Fang, 2020) and is being success-
fully employed since about 20 years ago, becoming a standard
structural scheme.
Given the iconic impact that a tall building possesses from

an architectural point of view, current research questions are:
(i) whether a family of alternative patterns exists to fulfill
both the need to have a different and recognizable aesthetic
appearance and to have load-bearing capacity as a discrete tube
structure; (ii) how it can be designed. In tall building prac-
tice, confirming this trend, some unconventional tube patterns
started appearing (e.g., the O-14 Skyscraper in Dubai, United
Arab Emirates, 2010).
This paper introduces a methodology entitled Vorogrid for

generating an alternative family of polygonal patterns that
serve as tube structures. This methodology aims to gener-
ate different Voronoi patterns that mimic typical structural
schemes occurring in tall buildings or generally in cantilever
tubes by altering the density of the seeds. The main idea is to
hide specific structural strategies fostering the flow of forces
in a discrete system made of organic and pleasant-looking
patterns.
Current state-of-the-art methods adopt Voronoi tessellations

(Angelucci & Mollaioli, 2018; Mele, Fraldi, Montuori, Per-
rella, et al., 2019) that are derived from hexagonal honeycomb
systems, the closest tessellation having a regular distribution
of seeds. The seeds of this regular pattern are then perturbed
by using three parameters, the random angle, the random scale
factor, and the irregularity factor, which become the descrip-
tors of the tessellation. Conversely, in the present case, the
distribution of seeds is not regular and they are moved to
increase the density of Voronoi cells in specific areas where a
higher mesh stiffness is desired. Thus, better performances and
more control in design are achieved.

In the following, after a brief outline of the research con-
text for tall building design and optimization, for diagrids and
poly-grids (pointing to the grid of cells with a generic polyg-
onal shape) and some hints on the use of Voronoi meshes in
design, the methodology of the present work is proposed. This
methodology is shown in fig. 1 and has been implemented
on a regular tall building model akin to the Sinosteel Interna-
tional Plaza building. Different pattern solutions are generated,
and geometric and structural optimization alternatives are pre-
sented to enhance the grid’s quality. Finally, the selected case
studies are discussed and compared to other state-of-the-art
solutions.

2 RELATEDWORK

Tall building design and optimization
A key role in the performance of tall buildings is played by
the conceptual design of the structure, which can be tackled at
different and inter-related levels, as well described in Tomei,
Imbimbo, & Mele (2018): at the global level, for designing
the shape and establishing a specific macroscopic behavior;
at the intermediate level, for defining the organization of the
elements, their relationships, and fulfill local stiffness/strength
demands; at the detail level. The present work is focused on
the intermediate-level conceptual design of tube structure tes-
sellations.
Due to the problem complexity and the high number of vari-
ables involved, the design phase is usually supported by com-
putational tools and by optimization routines. Indeed, because
of the object size, even small adjustments produce a large-scale
effect on the required resources and costs. However, optimiz-
ing a tall building is a large-scale problem and is intense
from the computational viewpoint. Thus, the choice of the
optimization approach and the appropriate design variables is
fundamental (Aldwaik &Adeli, 2014).Within this framework,
Adeli and colleagues introduced pioneering methods such as
the neural dynamics models (Adeli & Park, 1995 1998) and
parallel computing methods (Adeli & Cheng, 1994; Adeli &
Kumar, 1995). These are important milestones and have been
used to solve several engineering problems, such as the cost
optimization of large space steel structures (Sarma & Adeli,
2001 2003), the shape and topology optimization of free-form
roofs (Kociecki & Adeli, 2014 2015), the vibration control
of base-isolated irregular buildings (Gutierrez Soto & Adeli,
2017). Alternative methods incorporate game theory in the
design optimization (Mahjoubi & Bao, 2021), neural networks
(Li, Snaiki, & Wu, 2021; Oh, Glisic, Kim, & Park, 2019) and
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FIGURE 1 Vorogrid pipeline for generating variable-density Voronoi tube structures: (a) structural scheme; (b) seeds popula-
tion and Voronoi mesh; (c) building of a 3D model; (d) structural analysis; (e) optimization and cross-section refinement.

topology optimization algorithms (Angelucci, Spence, &Mol-
laioli, 2020; Beghini, Beghini, Katz, Baker, & Paulino, 2014;
Lee & Tovar, 2014).

From diagrids to poly-grids
The design and optimization of diagrids is a particularly fertile
research area. The diagonal columns and the ring beams create
a triangular tessellation, which is simple to model and gener-
ally applicable since any form can be discretized into triangular
sub-modules. Other benefits are related to the structural behav-
ior: both vertical and lateral loads cause prevalent axial internal
stress; shear lag effects and racking deformations are usually
low (Lacidogna, Scaramozzino, & Carpinteri, 2019; C. Liu,
Li, Lu, & Wu, 2018).
The simplicity of altering the triangular mesh has paved the

way for several studies aiming at finding the best design. Moon
(2008) firstly investigated the diagrid members’ inclination in
relation with the building height and aspect ratio, looking at
the best material utilization rate. Montuori, Mele, Brandon-
isio, & De Luca (2014) analyzed stiffness vs strength design
of patterns. Zhao & Zhang (2015) proposed optimal geome-
tries for curved and varying-angles straight diagonals under
wind and seismic loads. Asadi & Adeli (2018) investigate the
performance of steel diagrid structures with different building
heights and aspect ratios to evaluate their key seismic perfor-
mance factors. Tomei et al. (2018) included the cross-section
sizing in a more complex optimization method that also con-
siders non-uniform patterns, which can not be simplified into
reduced models. Similarly, Angelucci & Mollaioli (2017) pro-
posed a strength optimization method for stiffness-designed
patterns.

The design of polygonal patterns as tall building tube struc-
tures is a recent trend in research. The hexagrid system was
firstly introduced in Mashhadiali & Kheyroddin (2013) in
replacement of diagrids to improve the architectural appear-
ance of the façade, to increase daylight, to reduce the amount of
steel and the building mass, and to provide ductility. Evidently,
reducing the node connectivity from triangle- to poly-mesh has
a great effect on the node in terms of bearing capacity, fab-
rication, and costs, but, most importantly, it makes the grid a
bending-dominated structure. Thus, the efficiency of hexagrid
has been the main research question of Montuori, Fadda, Per-
rella, & Mele (2015), which additionally provided a stiffness
design criterion and a generalized homogenization approach
for tall buildings’ structural patterns based on beam analogy
(representative volume element, RVE). An alternative concep-
tual design tool has been provided by Bruggi (2020), in which
the box grid is modeled as a shell and the set of lattice is
assigned through a multi-material topology optimization.
To enable more design freedom through nature-inspired pat-

terns, Angelucci & Mollaioli (2018) proposed a procedure
for generating Voronoi-like patterns by perturbing a regular
honeycomb configuration. The Voronoi mesh is consistently
applied in the work of Mele et al. (2019), where the RVE
approach has been extended on a statistical basis to take into
account the inherent irregularity, non-periodicity, and random-
ness of the grid.

Voronoi mesh as a design tool
The Voronoi tessellation is a partition of a surface into cells,
whose property is to be close to each of a given set of points,
called vertices or seeds. Although Voronoi meshes can be
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found in literature across multiple research areas, from com-
puter graphics to finite element approaches, more recently they
are appreciated and increasingly adopted into digital fabri-
cation. Cucinotta, Raffaele, & Salmeri (2019) introduced a
stress-based topology optimization method for digitally man-
ufactured objects. Fantini & Curto (2018); B. Liu, Cao,
Zhang, Jiang, & Lu (2021) deliver volumetric porous struc-
tures. Martínez, Dumas, & Lefebvre (2016); Martínez, Hor-
nus, Song, & Lefebvre (2018) introduce parametric strategies
for producing general additive-manufactured objects. Indeed,
Voronoi meshes are characterized by low node connectivity
equal to 3 and an inherent organic-looking visual lightness.
Inspired by lightweight and robust lattice structures that

appear in nature, some works addressed the use of a Voronoi
mesh for structural purposes at a larger scale. The works Froli
& Laccone (2017); Pietroni et al. (2015); Tonelli et al. (2016)
proposed and validated a method for generating a Voronoi
mesh, whose cells conform to the principal stress directions
of the underlying surface, and are scaled and stretched accord-
ingly. Su, Wu, Ji, & Sun (2020) developed a morphogenesis
method for Voronoi structures of high architectural and struc-
tural performances. A design-to-manufacture pipeline is pro-
posed by Hua, Hovestadt, & Tang (2020) to handle timber
Voronoi shells delivery.

3 VOROGRID FRAMEWORK

The methodology proposed in the current work to generate
the Voronoi mesh and use it as tube structural grid is depicted
in fig. 1 and is described in the following steps. It consti-
tutes a design tool whose end goal is tuning the geometry of
a Voronoi pattern to comply with a desired structural behav-
ior. The first step is the selection of plausible static schemes
for the tube structure (fig. 1 a), which can be of any nature,
i.e. experience-based, derived by hand calculations or numeri-
cal computations. These schemes highlight curves and surfaces
on the tube that become candidate paths or areas to drive
the tessellation. Then, a variable density Voronoi tessellation
is defined, in which the Voronoi seeds are attracted by the
highlighted paths or areas to form denser regions (fig. 1 b).
More formally, the distance metric varies along the surface
such that near the attractors, the distance is less weighted.
Therefore the Voronoi tessellation becomes denser approach-
ing those regions. The cross-section of the grid elements is
initialized according to the stiffness-based procedure in Mele
et al. (2019).
A structural model is assembled to perform finite element
analyses under lateral and vertical loads (fig. 1 d). In this set-
ting, unlike diagrids, polygonal cells result in bending-stressed
elements. A generic cell may exhibit high stress because of

its size, orientation and position with respect to neighboring
elements, i.e. other cells or slabs. Therefore, an optimiza-
tion is carried out to globally improve the static performances
of the structure by perturbing the Voronoi centroids. Finally,
appropriate members’ cross-sections are chosen by assigning
commercial section properties to clusters of Vorogrid’s beams
(i.e. obtained by segmenting the tube into stacking modules
throughout the height) (fig. 1 e).

4 IMPLEMENTATION

The proposed methodology is applied to a tall building model
with a square floor plan to reduce the number of variables and
avoid shape-variation-related phenomena. The tube is there-
fore made of four all-equal rectangular surfaces.
All steps are streamed in the Rhinoceros-grasshopper envi-

ronment McNeel & Associates (2020). For the structural anal-
ysis, Karamba3D Preisinger & Heimrath (2014) has been used
for a direct feedback of the parametric model and within the
optimization routine, while SAP2000 Computers and Struc-
tures, Inc. (2021) has been employed to carry out the final 3D
models.
Fig. 2 reports the structural schemes considered as seeds’

attractors (areas or lines), namely:
(a) outriggers and belt truss scheme;
(b) megacolums;
(c) central shear wall and outriggers;
(d) megaframe;
(e) braced tube (Moon, 2010);
(f) principal stress lines on a uniformly-loaded equivalent

cantilever (Cascone, Faiella, Tomei, & Mele, 2021).
The symmetry of the building about the plan diagonals low-
ers the problem complexity and, as a consequence, allows
generating the grid on a single building face for computation
efficiency. Thus, the adopted schemes are 2D, and the Voronoi
diagram is geometrically defined and optimized on a single
face. Later, the obtained Voronoi face is mapped in 3D by
replicating and rotating it by 90◦ about the building corner.
Remarkably, this mapping produces Vorogrids mirrored with
respect to the building corner, so their beams meet at the same
nodes. The 3D model is employed to solve the sizing problem
and to verify the design solution.

4.1 Model configuration, materials and loads
The building model adopted for the design applications is
equivalent to the model considered in the work by Montuori et
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(a) (b) (c) (d) (e) (f)
FIGURE 2 Structural schemes (areas and lines) adopted in this work to attract Voronoi seeds, and their relative Vorogrid, from
left to right: a) outrigger and belt truss; b) megacolumns; c) megaframe; d) central shear wall and outriggers; e) braced tube; f)
cantilever stress lines. The width of the area regions adopted in the following experiments is 10 m; the Voronoi mesh is obtained
with the technique remeshing-from-distance (sec. 4.2).

53 m
53 m

3.9 m

35
1 

m

FIGURE 3 The building model adopted in this work and schematic plan view.

al. (2015), namely the Sinosteel International Plaza tall build-
ing. This 90 stories building has a square section of dimension
53x53 m, heightH = 351 m, and interstory height ℎ = 3.9 m
(fig. 3 ).
Apart from the external tube structure that constitutes the

design domain of this work, the building has another vertical
structure, i.e. a central concrete core organized as in fig. 3 that
provides vertical and lateral resistance. This core has a constant
cross-section throughout the height; its walls are 0.5 m thick
made of C45/55 concrete (Ec = 36.28 GPa, fck = 45MPa).

The grid elements are made of S275 steel (Es = 210 GPa,
fyk = 275MPa).
The building is loaded by dead loads given by the own

weight of the structural elements G1, automatically deduced
from the cross-section properties. The slabs bear a load of
G1 + G2 = 7 kN∕m2, summing the contribution of structural
an non-structural weights, and a live load of Qk = 3 kN∕m2.
Horizontally, a uniform load wind action of Qw = 200 kN∕m
along the building height is considered. These are later com-
bined using the Eurocode (EC) load combination schemes at
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FIGURE 4 Voronoi diagram with area attractors derived
from a random distribution of seeds with different densities,
case (a) (sec. 4).

the Ultimate Limit State (ULS) and at Serviceability Limit
State (SLS). The outer tube is supposed to be anchored on the
slabs to benefit from the rigid diaphragm effect, also identified
in Montuori et al. (2015), and from the coupling with the core.

4.2 Seeds population
Given a set of n points called seeds in the Euclidean plane,
each point Pi for i = 1, .., n can be connected with its neigh-
boring ones to form a triangular mesh. The Voronoi diagram
is defined as the partitioning of the plane into convex regions
which contain the portion of the plane closest to each seed;
Voronoi diagram is known to be dual or reciprocal of the
Delaunay triangulation of the seeds, e.g. the Delaunay tri-
angulation can be derived by just connecting the dots that
correspond to Voronoi regions that are adjacent. Similarly, the
vertexes of an existing triangulations can be used as seeds
for generating a Voronoi Diagram. When seeds are well dis-
tributed Voronoi diagrams usually produce cells that tend to
be regular polygons, or tend to irregular shapes contrarily. In
any case, the density and the shape of the cell is totally depen-
dent on the number and position of the seeds. In the present
work, several strategies are explored for seed placement that
lead to the creation of a Voronoi diagram with some desired
properties. These strategies can be grouped based on whether
the seeds are initialized as a regular or a random population.
When dealing with areas, implementing a random Voronoi is
straightforward: the tube surface can be differentiated into two
areas where random seeds are distributed with different densi-
ties (fig. 4 ). Obtaining a regular seeds distribution with this
strategy is still possible but produces irregular polygons on the
adjacency between areas with different densities. Therefore,
a smoother transition can be produced using a remesh-from-
distance procedure. The starting point is a regular quad mesh,
whose vertices are colored based on the distance from the area
attractors. Then, an isotropic remeshing is performed through

FIGURE 5 Voronoi diagram with areas and lines attractors
derived from remeshing-from-distance and dualization proce-
dure, cases (a), (d) and (e) (sec. 4): from top quad mesh (the
vertex color stands for the distance to the area attractor, the
closer the darker), remesh-by-color Delaunay triangulation,
dual Voronoi mesh.

RemeshByColor (Piker, 2013) that creates a Delaunay tri-
angulation. With reference to fig. 5 , the Voronoi mesh is
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FIGURE 6 Voronoi diagram with equally-spaced seeds on
the line attractors and random distribution of seeds elsewhere,
case (e) (sec. 4).

obtained simply by dualization. This method can also be suit-
ably applied to line paths (fig. 5 , bottom) by computing the
distance from the line attractors.
Instead, when dealing with line constraints, it is harder to

find a random population of seeds that generates a Voronoi
diagram that includes such lines. The simple solution of plac-
ing (equally- or randomly-spaced) seeds along with the line
attractors and populating the remaining part of the surface ran-
domly (fig. 6 ) has the drawback of creating a series of voids
centered on the line attractors. This configuration implies that
the load-bearing material, which is expected to be aligned
with the lines, is randomly oriented due to the randomness
of the neighboring seeds (fig. 6 , closeup). To overcome this
problem, two strategies are proposed. The first is to obtain
a new Voronoi mesh using as seeds barycenters of the dual
triangulation of the Voronoi diagram obtained by the simple
approach (fig. 7 ). The second solution is to place the seeds
symmetrically on offset curves of the attractors’ lines. Thus,
the generated Voronoi edges will fall along the attractor lines
and be aligned to them (fig. 8 ). These two strategies produce
irregular cells and small edges in which peak stress and con-
sequently plasticity can concentrate. As shown in sec. 4.4, this
issue can be partially solved by improving the mesh quality.
However, due to its consistency and better resulting quality, the
strategy of remeshing-from-distance is adopted in theVorogrid
pipeline.

4.3 Stiffness-based preliminary design
Following the remeshing-from-distance grid initialization, a
tentative cross-section is required to convert the Voronoi edges
into beams and run structural simulations in the further steps
of the Vorogrid method. For this purpose, Mele et al. (2019)
approach is adopted. Hence, the entire tube structure, i.e. the
design space adopted in this work, is homogenized as a large

FIGURE7 Voronoi diagram obtained from the barycenters of
the dual triangle mesh (computed from fig. 6 ), case (e) (sec.
4).

FIGURE 8 Voronoi diagrams with equally-spaced seeds on
offset lines of the attractors and random distribution of seeds
elsewhere, case (e) (sec. 4).

cantilever beam with a hollow cross-section, whose mechan-
ical properties account for the topology and size of the grid.
The grid topology and size can be inversely tuned by targeting
the limit deflection of the homogenized cantilever. The design
criterion is stiffness-based.
The problem of Voronoi meshes is the non-regular topology

and non-uniform distribution of structural material, which do
not allow to identify of a periodic unit cell, namely a Repre-
sentative Volume Element (RVE). Consequently, Mele et al.
(2019) observed a correlation between irregular grids and peri-
odic hexagrids that can be expressed through correction factors
on a statistical basis. Thus, by knowing the irregularity degree
of the grid � ∈ [0, 1] and the relative density �, the averag-
ing mechanical properties of the grid members can be found.
The irregularity degree is � = 0 for regular hexagrid, � = 1
for the maximum irregularity. The relative density is defined
as � = Vg∕Vd , the ratio of the volume occupied by the grid
Vg =

∑

i li ⋅ Ai (with li, Ai lengths and areas of the beams,
respectively) to the solid volume of the entire tube or design
space Vd = 4L⋅H ⋅b (withL = 53m building side,H = 391m
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FIGURE 9 Reference hexagrid to initiate the stiffness-based
design.

height, and b tube width, which is supposed to be equal to the
width of the grid cross-section).
In the present work, the Vorogrids are obtained geometri-

cally as in sec. 4.2 from different numbers of seed samples with
the objective to score a similar overall total length ∑

i li, and
therefore a similar relative density � because the cross-section
is constant (tab. 1 ). Since the differences among the cases are
not considered, a unique � is input as the mean density. The
parameter � is taken as 0.8 from a visual comparison of the
Vorogrid patterns with the design solutions proposed by Mele
et al. (2019).
Unlike Mele et al. (2019), the Vorogrid meshes are not an

outcome of altering an hexagrid. However, fixing a reference
hexagonal cell is required to initialize the homogenization pro-
cedure. The adopted cell is found by tessellating a tube face
with all-equal hexagons to have a similar number of seeds to
the Vorogrids (816). The resulting hexagon is shown in fig. 9
and has ℎ = 1.66 m, d = 4.05 m, � = 65.85◦. Then, cross-
section values are input, so the actual densities can be updated
for both the Vorogrid (Ai constant term) and the homogenized
tube (b term). The definition of reference hexagrid and the
cross-section leads to the computation of the correction factors
on a statistical basis from the ratios of moduli of the Voronoi
over the reference hexagrid (both in axial and shear direc-
tions). The cross-section is updated until a target top deflection
of Δ = H∕500 = 0.702 m is reached. In the present case,
a Square Hollow Section (SHS) tube of 1.10 × 1.10 m with
thickness s = 0.09 m, corresponding to the correction factors
�E1 = 0.9724, �E2 = 1.0422, �G12 = 1.0282, scores exactly
Δ = 0.702 m. At this stage, the Vorogrid is supposed to bear
the entire wind loading, so the cross-section is overestimated
in terms of stiffness.

It is worth mentioning that this preliminary design should
be subordinated to the geometry selection of the grid and not
only to a density value �. Indeed, this latter parameter appears

TABLE 1 Statistics of the Voronoi patterns for all examined
cases.

Case Length (m) Num. seeds n Density �

(a) 0.01 - 7.07 783 0.127
(b) 0.21 - 9.99 766 0.121
(c) 0.05 - 12.17 838 0.122
(d) 0.12 - 12.79 745 0.121
(e) 0.03 - 9.86 708 0.121
(f) 0.03 - 12.44 714 0.121
Mean 3.18 759 0.121
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FIGURE 10 Sensitivity analysis of the density parameter �
for a fixed Vorogrid cross-section SHS 1.10 × 1.10 m, s =
0.09 m, computed from a 3D model without core under lateral
load only (in a linear simulation).

not descriptive enough as shown in fig. 10 because Vorogrids
with the same density � behave differently. Nonetheless, the
actual deformation of the patterns is below the H∕500 target,
and so the cross-section can be deemed oversized for the tested
cases. The scattering of data remains for Vorogrids with differ-
ent mesh and density, even though case-dependent trends can
be highlighted.
The value of this preliminary design is twofold. First, it

concludes that state-of-the-art methods could be applied to
Vorogrids, although the result is affected by a certain deviation.
Second, it returns a tentative cross-section, which constitutes
the base for further refining as in sec. 4.5, also considering the
core’s contribution in providing lateral stiffness and the effect
of vertical load.
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FIGURE 11 Lloyd relaxation of a Voronoi diagram derived
from a random distribution of seeds.
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FIGURE 12 Driving the dual triangle mesh to a CP mesh,
given a Voronoi diagram derived from a random distribution
of seeds.

4.4 Vorogrid optimization
4.4.1 Geometric optimization
The reason for addressing geometric optimization lies on the
necessity to avoid mesh degeneration in the form of sharp
angles and short edges. On the one hand, these can turn into
structural inefficiency, i.e. stress peaks may be produced if the
grid is abruptly distorted or if some elements are locally too
stiff. On the other hand, these can develop construction issues,
i.e. complex and large nodes or unfeasible details. On this lat-
ter point, it should be considered, for instance, that several
conflicts may be produced since Voronoi edges as beams are
provided with proper width and merge with variable angles.
A global optimization that improves the shape of Voronoi
cells can be performed through the Lloyd relaxation algorithm.
The algorithm iterates over the positions of the seeds and
moves them to generate increasingly accurate approximations
of a centroidal Voronoi tessellation of the input, as shown in
fig. 11 .
Given a Voronoi mesh and its triangular dual, the more
the center of the circumcircle of a triangle is far from its
barycenter, the less regular will be the Voronoi cell. Therefore,
another global optimization alternative to foster the regularity
of Voronoi cells is to push the dual triangular mesh to be a
CP mesh (Schiftner, Höbinger, Wallner, & Pottmann, 2009),
namely a triangulation where the inscribed circles of two adja-
cent triangles have a contact point on the shared edge, as shown
in fig. 12 . A drawback of both methods, if lead to convergence
(or performing a high number of iterations), is the loss of infor-
mation about seeds’ densities and the tendency to conform and
regularize the cells (last row of figs.11 -12 ). However, the
Vorogrid pipeline adopts the CPmesh optimization strategy up
to 10 iterations because it balances geometric improvements
while preserving the grid features.
Other actions can be performed at the local level to improve

both the mesh quality and the subsequent structural behavior
(fig. 13 ), such as:

• vertex collapse, which aims at merging pairs of vertices
that are too close, this work considers the beam width as
the limit distance for vertex collapse;

• vertex snap to other structural elements, which aims at
moving the Voronoi vertices on the slabs or on the edge
beams of the building to avoid short elements and closer
nodes.

The effect of these local modifications on beam lengths are
shown in fig. 14 . In the Vorogrid pipeline, both local strate-
gies are adopted.

FIGURE 13 Local improvements (edited cells are dashed):
on the left, vertex collapse; on the right, vertex snap to slabs
(dotted lines).

4.4.2 Structural optimization
A major issue of Voronoi meshes used as structures lies in the
stress concentrations that occurs due to the grid’s randomness
with respect to the loading direction. The stress on a Voronoi
cell is not only function of its size and shape but also depends
on it neighboring cells. The total stress can beminimized while
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FIGURE 14 Histogram of the lengths’ distribution in the
original mesh and after both improvements of vertex collapse
and vertex snap to slabs: on the left, case (a); on the right, case
(f).

R

xi,0 xi

FIGURE 15 Schematics of the optimization problem in
which the seeds of the most stressed Voronoi cell are moved
within a circular neighboring of radius R.

satisfying the global equilibrium by moving the seeds in a
circular domain, as shown in fig. 15 .
This optimization problem can be thus formulated as the

following.
min �(xi) (1)

subject to: K(xi) ⋅ u = F (2)
(xi − xi,0)2 ≤ R2i (3)

where xi is the vector of variables, namely the current posi-
tions of the n Voronoi seeds, xi,0 is their starting position, � is
the maximum stress computed on each beam, Ri is the radius
of the circular domain of the variable centered in xi,0. Eq. 2
expresses the equilibrium condition according to the displace-
ment method, in which K(xi) is the stiffness matrix, u is the
vector of unknowns, namely the nodes displacements, and F
is the vector of external forces. Considering the different sizes
of Voronoi cells, the domain of the variables is supposed to be
size-dependent not distorting the initial geometry. Therefore,
for each step and for each Voronoi cell the radius is bounded

by Ri = c ⋅
√

Ai∕�, where Ai is the area of the i-th cell and c
is a reduction factor equals to 0.5 in the current case.
Eqs. 1-3 describe a constrained nonlinear optimization

problem that can be solved using several state-of-the-art algo-
rithms. Among them, good performances have been obtained
with the derivative-free Subplex algorithm implemented in the
grasshopper plug-in goat (Rechenraum GmbH, 2021), using
as termination criterion a maximum of 10k evaluations of the
static solution.
The optimization has been performed using Karamba3D

(Preisinger & Heimrath, 2014) as FEM solver and, to limit the
computational job, it has been restricted to only a single face
of the building, which is supposed to be loaded at the SLS
with its tributary vertical load and half of the entire wind load-
ing. In the current implementation, the stress � is replaced by
the utilization factor U , which expresses the beam’s demand
over capacity ratio according to the Eurocode 3 verification
formulae within Karamba3D.
This optimization shows an expected load-dependency due

to the randomness of the grid, so the selection of the vector of
forces F is not trivial. First, concerning lateral loads, the out-
put is influenced by the wind load direction. To consider this
effect both wind directions are included as different load cases,
and the beam utilization factor is evaluated as the maximum
out of the two. Second, adding the vertical load alters the stress
paths and lead to different optimized Vorogrids configurations.
But concurrently, the exact amount of vertical load can not be
known in this phase because it depends on the relative stiff-
ness of the grid with respect to both the core. Therefore, the
vertical load computed for the tributary slab area is added to
the previous load cases in a SLS load combination. This limi-
tation can be overcome if the problem is solved in a 3D setup,
in which the correct spatial distribution of loads and load-
bearing elements is better captured, but a far more intensive
computational power is needed.
As reported in Fig. 16 , the resulting histogram after the

optimization confirms the element utilization under SLS lat-
eral load only and SLS combined lateral and vertical load,
respectively. The combined load remarkably triggers higher
stress throughout the grid, so it appears more reasonable to per-
form the optimization in this case since it would be closer to
the real behavior. These latter results are used in the final 3D
examples included in Sec. 5.
The restraints between the Vorogrid and the slabs are

included in the optimization routine as provided by rigid
weightless beams. Concurrently, the grid elements that inter-
sect the slabs are segmented, creating an additional structural
node. This procedure overloads beam segments that are too
small. However, as mitigation to this problem, the vertex snap
strategy is applied at each optimization step.
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FIGURE 16 Histogram of the beams’ utilization U in the
original mesh and after the structural optimization of eqs. 1-
3 for the case f: on the left, lateral wind loading; on the right,
combined lateral and vertical loading.

Globally, the structural optimization output demonstrates
the validity of the proposed approach even considering dif-
ferent load cases. Starting from the original mesh, a sensible
stress reduction is obtained in all cases as highlighted in
tab. 2 . Overall, this result leads also to a reduction of themean
and average values, meaning that the optimization thus formu-
lated alters the whole statics of the grid positively. It is worth
noticing that the loads are overestimated in this planar case, so
it might happen that even after the optimization the peak val-
ues result far beyond the material capacity (U ≥ 1, as for the
combined load case). On a qualitative basis, the optimization
shows a local character, namely the seeds’ alterations are small
and unable to deform the mesh design prominently.

4.5 3D model and sizing refinement
For each structural scheme of fig. 2 , a 3D model is built by
replicating the Vorogrid face after the optimization by sym-
metry about the plan diagonals. The aim is (a) to assess the
effectiveness of the proposed pipeline and (b) to size the grid.
It is recommended for the edges that merge on the corners,
from different sides of the building, to have coincident nodes
for the sake of reducing shear and bending. This requirement
is implicitly fulfilled by adopting the current mapping scheme.
Moving from 2D to 3D the model is enriched with the core,
the slabs, and more accurate restraints.
The FE model is linked to the parametric geometric model

and is automatically analyzed in SAP2000 (Computers and
Structures, Inc., 2021). The Vorogrid consists of a beam net-
work that is fixed on the ground and is attached to each
slab. The slabs are thick shells spanning from the tube to the
core, which distribute the tributary lateral and vertical loads
as defined in sec. 4.1. The core is modeled through shell
elements. The gravity loads on the structural members are
deduced from their section properties. Wind load is lumped

and applied to each slab. All other loads are uniformly dis-
tributed on the slabs. All analyses consider nonlinear geometry
effects and the EC load combinations of Tab. 3 at the ULS
with maximum effect and at the SLS to assess internal forces
and displacements, respectively.
Once the 3D model is created, the strength and stiffness

can be tuned along the height of the building, solving a siz-
ing problem. Since the design domain is the Vorogrid, only
the cross-sections of its members are modified without altering
the geometry and the remaining parts of the building. To keep
the problem tractable, clusters of grid members can be defined
by their positioning in height, and for each cluster a uniform
cross-section can be plugged in.
For the present cases, the building is divided into five stack-

ing modules of beams. Then, found a discrete set of standard
cross-section sizes, the current cross-section properties of the
clusters initially set as per Sec. 4.3 are updated manually by
tapering until the requirements are met.

5 RESULTS AND DISCUSSION

This section includes the results of 3D structural analyses and
the discussion on six case studies in comparison with state-of-
the-art solutions. The Vorogrids are obtained from the pipeline
of fig. 1 , which streams selected strategies for the grid pro-
cessing. For the grid initialization the remesh-from-distance
approach is used on all schemes (previously shown in fig.2 ).
This approach has been preferred for its consistency and for
the aesthetic quality of the resulting mesh. All Vorogrids have
been submitted to geometric and structural optimization under
the SLS combination of vertical and lateral loads.
For the experiments to be comparable, the adopted equiv-

alence criterion for the tube structures is they have approx-
imately the same dead load, which is the same of having a
similar total length of the mesh edges. This criterion inherently
applies since the mesh generation step because the objec-
tive was to obtain an almost-constant density �. Moreover, it
applies also when comparing Vorogrids with state-of-the-art
solutions, such as diagrid (dia), hexagrid (hex) and random
Voronoi (rVo, Fig. 17 ). Some statistics of the case studies
are reported in tab. 4 . Diagrids are remarkably advantageous
for a similar total length because they have fewer and all-
equal beams and nodes. However, their hidden cost lies in the
node technical complexity, having 6 beams merging per node.
Conversely, all other poly-grid cases benefit from a low con-
nectivity (3 beams per node). However, all nodes and all beams
are different from each other.
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TABLE 2 Stress reduction after the structural optimization of eqs. 1-3 for all examined cases (U values are EC3-compliant
beams utilization factors).

Load Case Case Ustart Uend Δmax(U ) Δmax(U )

max() mean() median() max() mean() median() (%)

SLS Wind only

(a) 1.485 0.101 0.056 1.019 0.101 0.056 0.466 31.4
(b) 0.953 0.119 0.076 0.684 0.117 0.077 0.269 28.3
(c) 0.829 0.118 0.073 0.750 0.077 0.269 0.079 9.6
(d) 1.028 0.101 0.055 0.946 0.073 0.079 0.082 8.0
(e) 0.872 0.118 0.071 0.706 0.056 0.082 0.166 19.0
(f) 0.888 0.129 0.091 0.658 0.124 0.090 0.230 25.8

SLS

(a) 7.320 0.333 0.220 1.950 0.307 0.217 5.370 73.4
(b) 2.610 0.346 0.274 1.559 0.344 0.274 1.052 40.3
(c) 1.643 0.355 0.270 1.548 0.346 0.272 0.095 5.8
(d) 4.022 0.322 0.242 1.791 0.318 0.241 2.231 55.5
(e) 3.480 0.348 0.272 1.576 0.345 0.271 1.904 54.7
(f) 1.877 0.367 0.316 1.452 0.360 0.315 0.426 22.7

TABLE 3 Coefficients applied to characteristics loads for the
adopted ULS and SLS load combinations (loads are structural
G1, non-structural G2, variable Qk, wind Qw).

Name G1 G2 Qk Qw

ULS1 1.30 1.30 1.50 0.00
ULS2 1.00 1.00 0.00 1.50
ULS3 1.30 1.30 1.50 0.90
SLS1 1.00 1.00 0.70 1.00

TABLE 4 Vorogrid statistics for all examined 3D models

Case Beams Nodes Length (m) Tot. length (m)

(a) 10940 8144 0.50 - 10.0 26751
(b) 10478 7586 0.51 - 9.3 26833
(c) 10246 7614 0.51 - 8.5 26652
(d) 10404 7732 0.50 - 8.5 26734
(e) 9770 7170 0.51 - 9.2 26968
(f) 10262 7574 0.50 - 8.5 26764
(dia) 3240 1656 4.17 - 5.9 27012
(hex) 7772 5280 2.27 - 4.2 26873
(rVo) 6694 4338 0.42 - 9.7 26164

5.1 Performance assessment and comparison
with state-of-the-art patterns
Fig. 18 reports the SLS displacement of all models having a
same uniform cross-section of 1.10 × 1.10 m, s = 0.09 m. As

FIGURE 17 Adopted state-of-the-art tessellations having
similar total beam length, from left: diagrid (dia), hexagrid
(hex), random Voronoi (rVo).

expected, the (dia) outperforms all other cases concerning stiff-
ness, while all other Voronoi-based examples are in agreement,
including the (rVo). The (hex) has an intermediate behavior.
In terms of absolute displacements, the best Vorogrid solu-

tions are models (f), (b), (e) and (c), which are inspired by
stress lines and mega frame schemes (mega columns, braced
frame and mega frame). On the one hand, this result confirms
that it is worth altering Voronoi meshes using statics-driven
approaches (as in Pietroni et al. (2015)), since stress inspired
meshes obtained with the Vorogrid method have good stiff-
ness. On the other hand, it seems that this result is aligned with
mega frames feature of being ideal structural systems for super
tall buildings, as they can provide high lateral rigidity for a
minimum weight. Therefore, in terms of stiffness, designing a
frame-inspired Vorogrid is a valuable strategy as the method
can inherit this feature from the initial structural schemes. The
stiffness of model (f) shall be additionally improved if, instead
of mapping the same grid (obtained from planar cantilever
stress lines) on all building faces, the tube stress lines (similarly
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to Cascone et al. (2021)) are considered and jointly optimized.
The other models (a) and (d) performances are worse than the
(rVo). The main factor affecting them is the less-dense grid in
corner areas if compared to other Vorogrids.
In terms of interstory drift, a similar trend can be observed:

the (dia) is still outperforming with respect to the (hex) and
to the cluster of all other cases. The randomness of the tessel-
lation is a characteristic of all Voronoi-based models and can
lead to fluctuating values. This issue is to be considered in the
detailed design phase as it may require a wider displacement
capacity for the secondary elements.
All deformed configurations indicate a bending behavior

with a stiffening effect in the upper third of the elevation, which
shows a more linear deformation in the absolute displace-
ment and an almost-constant interstory drift. The bending-type
deformed shape in the fist two thirds of the building is mostly
imposed by the core. If the core is removed, the deformed
shapes are more linear. The extreme cases are: model (a), hav-
ing the most linear behavior, and model (d), in which the
deformed shapes with- and without-core are closer. Model (f)
has similar features to (d). The stiffening effect is due to the use
of a constant beams’ cross-section and is attenuated if refined.
Moreover, in some case, the stiffening effect is larger because
more small and rigid cells are located in the upper part (i.e.
models (a), (c), (d)). In general, considering the variety of
Vorogrids the displacement variation is included in a narrow
spectrum of values. The narrowing occurs as an outcome of
geometric and structural optimization.
All models show absolute and relative displacements that

are well within the common limitations Δ < H∕500 =
0.702m and �i < ℎ∕300 = 0.013m respectively. This outcome
is also a byproduct of using a non-tapered stiff core. Although
it may seem redundant, such a core is strictly necessary from
the strength point of view for guaranteeing ULS performances
for the Vorogrids, especially at the lowest levels.
Fig. 19 plots the von Mises stress for the grid elements

under the most demanding load combination ULS3. The per-
element stress of Vorogrids is in many cases beyond the
material resistance, unlike (dia) and (hex) where the demand
over capacity ratio is lower than 0.7. For this reason, the cross-
section of Vorogrids require a strength refinement. Indeed,
even if well calibrated from the stiffness point of view (see
previous Fig. 10 ), the cross-section determined as in Sec.
4.3 must be intended as an initialization value. The cross-
sections are modified using five clusters of members as shown
in Fig. 20 iteratively until the desired strength is reached, once
the core is added and all load combinations are considered.
The point scattering arising in both charts of Fig. 19

(regardless of using constant or refined cross-sections) denotes
a large spectrum of element utilization. If on the one hand it
leads to the exploitation of the entire range of strength capacity
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FIGURE 18 SLS absolute displacement and interstorey drift.

and to the possibility of achieving robustness, on the other hand
it constitutes an actual barrier to adopting a finer clustering of
members in which the cross-section is not oversized. Concern-
ing state-of-the-art solutions, (dia) and (hex) models do not
suffer from strength problems (Fig. 19 ) since, as well known,
their design is governed by stiffness. Indeed, their cross-section
could be rather reduced for material saving. Instead, the (rVo)
model (omitted from the figure) has a bending-dominated grid
that makes it akin to Vorogrid structures. And similarly the
stiffness based criterion can only provide a tentative section to
be later refined.
In general, Voronoi-based patterns can hardly be used if

not in combination with a core. Alternatively, a high-strength
material could be used. Indeed, this work employed S275 steel
to effectively compare the Vorogrids with other competitors
and previous research data, but choosing a high-strength mate-
rial would result in a more balanced design between stiffness
and strength.
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FIGURE 19 ULS3 strength verification before and after the
refinement for the cases (a) and (f) in comparison with (dia)
and (hex).

After the section refinement, in the experiments there are
still a few beams stressed beyond the material threshold. In
this case, it is not appropriate to assign a larger section to the
whole cluster because the provided benefits would be small
if compared to the added load. Instead, this demand could be
better satisfied locally by altering the section where needed.
It is interesting to observe other features of Vorogrids from

their macroscopic behavior. Fig. 21 reports on the cumulative
interior forces in the worst load combinations (the cross-
section is constant). Cases (a) and (d) behave similarly to tall
buildings with outriggers that they mimic: the axial and shear
forces have an oscillating trend around the outrigger areas
where the Vorogrid is denser and stiff as the core; and the
bending plot of the core apart from small fluctuations appears
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0.95 x 0.95
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   s = 0.045
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FIGURE 20 Members’ cross-section refinement: top, case
(a); bottom, case (f).

similar to an outrigger-supported core, in which the grid per-
forms as an exterior plate in tension-compression and relieves
the core. In these cases, the grid reaches a high strength ratio.
Due to the higher density around the corners, the case (b)

shows the highest bending strength, but it seems to be more
sensitive to the shear lag effect. Case (c) is a combination of
the features of (a) and (b). In the case (e), the horizontal attrac-
tor lines of the braced tube increase locally the stiffness of the
grid, which shows signs of a belt truss behavior. This effect
characterizes positively the bending force on the core which is
lower than in previous cases, except for local peaks. The case
(f), similarly to (b), makes maximum use of the external tube
in supporting loads. Interior forces flow at an almost-constant
ratio throughout the building.
Overall, as tube structures, a common characteristic of Voro-

grids is the high bending strength. Conversely, shear and axial
forces are carried more by the core. This latter effect is typi-
cal of generic random Voronoi buildings, but it is not observed
in the (dia) and (hex) cases, where the contribution of the grid
is always prevalent since they bear vertical and shear loads
more efficiently. In particular, shear resisting mechanism is the
key of success of diagrid, and a more slender core shall be
used in diagrids and hexagrids. The advantage of these systems
constitutes the main lack of Vorogrids (and similarly of ran-
dom Voronoi), which are not able to mobilize axial-prevailing
member forces because of the geometry of the pattern. In fact,
by observing in detail the grid behavior it appears clear that
its structural response combines all kinds of internal forces.
Fig. 22 reports the diagrams of the axial force and bending
moment for two exemplary cases (b) and (f) at themost stressed
areas of the building. The maximum per-section von Mises
stress spreads over the whole grid, however, it is caused also
by bending moments, which affect only the extremes of the
beams.
The same 3D models are used to run the natural frequency

analysis of all examined Vorogrids. In addition to the structural
elements’ mass, the non-structural components on the slabs are
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FIGURE 21 Interior forces, from the first row: cases (a); (b); (c); (d); (e); (f).
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added as mass from the loads according to the EC combina-
tion G1 + G2 + 0.3 ⋅ Qk. Tab. 5 reports the first six periods
and participating mass ratios for all cases. Fig. 23 shows the
first six modal shapes for an exemplary case (d). With a small
exception on models (b) and (e), all examples reveal a simi-
lar behavior. Modes 1 and 2 are translational modes in y and
x directions, respectively. Mode 3 is the fundamental torsional
mode.Mode 6 is the verticalmode along the z axis. The first six
modes collect cumulative participating mass ratios higher than
80%, while 20 modes are sufficient to reach a modal participa-
tion higher than 90%. The first two modes of the cases (b) and
(e) are not axis-aligned but instead are diagonal. Although the
patterns are asymmetric with respect to the mid-faces axes, the
natural frequency analysis exhibit symmetric mode shapes and
mass participation (modes 1-2, and modes 4-5). More impor-
tantly, the dynamic stiffness of all cases is included in a narrow
span: the first fundamental period ranges from 4.266 s of (c)
to 4.678 s of (e). The state-of-the-art competitors show similar
modes and modal participation, but a different dynamic stiff-
ness: 4.049 s for (dia), 4.357 s for (hex), 4.752 s for (rVo), as
first periods.

FIGURE 22 Structural behavior of the cases (b) and (f):
maximum von Mises stress, axial force and bending moment
distribution at the ULS3 for (part of) the downwind and lateral
faces.

5.2 Details and feasibility
A fundamental aspect of real world applications is fabrication.
Obviously, the modular systems of diagrid and hexagrid have a
matchless degree of prefabrication, and especially in presence
of symmetry they can attain excellent cost-effectiveness. The
premise of this work to find a pleasant-looking organic pat-
tern is inherently combined with geometric complexity, which
consequently leads to custom elements everywhere. Evidently,
there is no room for comparison if standard techniques are
used, instead this complexity can be advantageously managed
by means of digital fabrication means in which the material/la-
bor saving comes from the repetition of same manufacturing
actions performed by numerically-controlled machines. How-
ever, even in absolute terms, some features positively affect
the feasibility of Vorogrids. First, concerning fabrication, the
adoption of a single cross-section for all members in a cluster
may lead to a remarkable economy (if the material cost is not
the main issue). Second, the use of three-way nodes is advan-
tageous in terms of production, and in the authors’ opinion
they may present a potential that is still unlocked (especially
from the mechanical point of view, i.e. damping capacity and
robustness). Finally, in the current application case, the sym-
metry of the building about the orthogonal directions could be
exploited to adopt a strictly symmetric Voronoi mesh, which
have the advantage of increasing the prefabrication and obtain
a more symmetric structural response.

6 CONCLUSIONS

This paper introduced Vorogrid, a novel strategy to design
Voronoi tube patterns for tall buildings, whose density is
driven by lines and areas drawn on the surface and inspired
by known structural schemes. The resulting structures have
an organic and aesthetically-pleasant appearance, and show
mechanical soundness. Overall, the most interesting feature
offered by Vorogrid structures is their ability to reproduce
some mechanical features of the schemes they mimic, such as
the excellent rigidity for frame-inspired grids and the interior
force distribution for outrigger-inspired grids. The structural
response is uniquely function of the beams’ distribution on
the tube faces and suggests the substantial importance of the
pattern on global performances. Therefore, the design intent
of hiding a specific structural behavior behind an apparently-
organic pattern is achieved.
All tested configurations show a high bending stiffness.

However, unlike other discrete tubes, adopting an irregular
polygonal pattern turned Vorogrids’ structural behavior to be
bending dominated. Thus, as opposed to diagrids, in which the
grid is mainly engaged in axial stress and the shear resisting
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FIGURE 23 Natural frequency analysis: first six modal shapes for the case (d).

mechanism is effective, they undergo a complex and unevenly-
efficient state of stress. Thus, diagrids remain outperforming in
terms of stiffness and strength, but are based on a diamond pat-
tern in use since 20 years. Concerning poly-meshes, Vorogrids
can be located between hexagrids, which have better mechani-
cal performances and regular tessellation, and randomVoronoi
structures, which are more chaotic in geometry and mechanics.
The bending-dominated random grid also highlighted

another difference concerning state-of-the-art competitors:
the design problem of Vorogrids is strength-based. So, even
though stiffness-based methods used for random Voronoi pat-
terns proved accuracy to some extent, the use of a core is
recommended since the building would meet the displacement
demands but overcome the material capacity. This remarkable
behavior is shared by all Voronoi-based cases, including ran-
dom Voronoi buildings. Questions remain about the ability
of the current stiffness-based preliminary design to provide
good initialization values for the cross-section. On the other
hand, the irregularity and density variability of Vorogrids
make a strength-based preliminary design hard to perform.
Moreover, the core further complicates it. These have been
the reasons why, as the last step, the cross-section is refined
to fulfill strength requirements. Besides these aspects, all pro-
posed Vorogrid examples excel in stiffness, having a low top
and inter-story drift.
The presented method automated all the design steps that

start from the structural schemes and lead to a 3D model
of the building with its finite element representation. More-
over, it integrated structural and geometric optimization of
the cells that mitigate localized peaks of stress caused by the
randomness of Voronoi cells without sacrificing the organic

appearance of the patterns. However, the computational power
required by some operations was a drawback. So, they were
conveniently performed in 2D, exploiting the symmetry of the
building. However, a future 3D extension is recommended for
accuracy and generality.
The novelty of the work is in the ability to control and

improve the Voronoi scheme and make it suitable as a tube
structure. The conceptual method proposed in this paper con-
stitutes a design tool that expands the design possibilities for
tall patterned buildings and supports the generation of poten-
tially endless pattern design variations and solutions. The work
characterizes the response of themain parameters to the overall
structural behavior. Moreover, it makes a further step in apply-
ing and understanding how variable-shaped polygonal patterns
could possibly be used as tube structures.
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