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Abstract Since the early days of the low-cost camera development, the collection 

of visual data has become a common practice in the underwater monitoring field. 

Nevertheless, video and image sequences are a trustworthy source of knowledge 

that remains partially untapped. Human-based image analysis is a time-consuming 

task that creates a bottleneck between data collection and extrapolation. 

Nowadays, the annotation of biologically-meaningful information from imagery 

can be efficiently automated or accelerated by Convolutional Neural Networks 

(CNN). Presenting our case studies, we offer an overview of the potentialities and 

difficulties of accurate automatic recognition and segmentation of benthic species. 

This paper focuses on the application of Deep Learning techniques to multi-view 

stereo reconstruction byproducts (registered images, point clouds, ortho-

projections), considering the proliferation of these techniques among the 

marine science community. Of particular importance is the need to semantically 

segment imagery in order to generate demographic data vital to understand and 

explore the changes happening within marine communities. 
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1 Moving to automated analysis: increasing the scale and the efficiency  
 of coral-reef monitoring   

 

Coral reefs are ecosystems of vital importance for the planet, hosting 25% of 

marine biodiversity. Over the past few decades, the decline of these habitats has been 

rapidly increasing due to factors such as thermal stress, over-fishing, or anthropogenic 

pollution [13]. Periodic demographic surveys allow for an understanding of how fast 

coral reefs are changing, by assessing the mortality, recruitment, fragmentation, or 

growth of colonies [19]. In situ surveys are still a commonly used method to gather 

this information but remain cumbersome and time-consuming. As such, they are limited 

in the scale at which they can be effectively implemented.  

To derive models describing population dynamics, study the major factors impacting 

the health of the coral reefs or quantify the species resilience, ecologists need a highly 

resolved large-scale understanding of communities.  

Underwater photographic surveys (speed up by the use of underwater scooters, 

ROVs, and autonomous vehicles) provide a rapid supply of information across larger 

areas. These collected images support the creation of permanent archives for future 

analysis, further increasing the value and utility of these datasets. 
Image annotation has traditionally been performed by a human operator. 

Coarse community assessment of percent coverage involves the generation of several 
randomly-sampled points on an image and the association of each point to a known 
class of benthos. When the number of labeled points is sufficiently large, the presence 
of organisms on a reef can be statistically described. A commonly used tool for manual 
point-based annotations is Coral Point Count [24], from which coverage data on 
benthic organisms can be extracted. Manual point designations within photos requires 
a considerable amount of time. In [34], it is reported that for a survey of about 1000 
images more than 400 manual working hours are needed. The underwater readability 
presents challenges leading to human error, where annotated points can fall on 
regions of the image that are not visible or on uncertain contours of corals. Other 
causes of human misclassification are the repetitiveness of the labeling task, the 
required experience, and above all, the inability to examine the colonies directly in the 
field [36-37]. Concluding, humans can be inconsistent over time and across individuals. 

In [6] and [8], the authors reveal the bottleneck between the large amount of 
image data collected each year and the extrapolation of quantitative data by visual 
inspection. The National Oceanic and Atmosphere Administration (NOAA) reported 
that biologists analyze just 1-2% of the millions of underwater images acquired each 
year on coral reefs [8]. 

Point-based annotations are not sufficiently descriptive to quantify the growth and 
shrinkage, or to analyze the spatial distributions of coral colonies. These studies require 
the outlining of the contour for each colony (see Fig. 1), performing a per-pixel 
classification. The manual annotation of areas, typically demands about one hour per 
square meter. This task, the partitioning of an image into (disjointed) sets having semantic 
meaning, is commonly known as semantic segmentation. Nowadays, the semantic 
segmentation, as well as other visual recognition tasks, such as coral reefs 
classification [40,41], can be efficiently automated (or supported) by methods 
based on Convolutional Neural Networks (CNN).  

This work discusses the effectiveness, challenges, and limits, of the automatic 

analysis of coral reef images. More precisely, we apply the semantic segmentation 

task on ortho-projections of point clouds. Ortho-projections and ortho-mosaics 

are traditional data products used by researchers to extract ecological data across 

broad spatial scales. We focus on a dataset composed by human-labeled ortho-

projections, provided by the Center for Marine Biodiversity and Conservation, 

Scripps Institution of Oceanography, UC San Diego. The contribution includes: 

1. A complete overview of the challenges in the fully automatic semantic 
segmentation of corals. Section 3 describes the issues introduced by the corals' 
morphology. 

2. An analysis of the most suitable multi-view stereo related by-product; Section 
4 motivates the choice of ortho-projections as opposed to working on digital 
images or 3D point clouds. 

3. A methodology to deal with the semantic segmentation of large images; 
Section 6.  

4. Strategies to improve network performances and generalization. 
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Additionally, Section 2 collocate this work in the literature; Section 5 discuss 
the case study, while Sections 9 and 10 disclose the semantic segmentation 
problem in the full three-dimensional context and anticipate the future directions 
of our study. 

 

2 Related Works 

 
The recognition of marine organisms, as well as other areas of image analysis, has 

been automated in recent years by the introduction of machine learning 

approaches. Most benthic annotation tools are point-based: this couples well with. 

patch-based classification models, as they are directly applicable to point-

annotated datasets. Each input image for the training dataset is generated by 

cropping a square area around each annotated point. A patch-based CNN results 

in a single class prediction per patch. This approach leads to the problem of patch 

size: patches must be large enough to describe the structure of the marine 

organism, but small enough not to incorporate other classes. The classification of 

points lying on shape profiles is problematic across every patch size. 

In [5], the authors proposed a machine learning approach to automatically 

point-label eight classes of benthic organisms and the background. These classes 

cover the 96% of Moorea’s coral reefs, with the remaining benthos containing rare 

coral species with insufficient coverage for automatic labeling. Features are 

classified using a Support Vector Machine (SVM) classifier using both color and 

texture. This method reported a classification accuracy of 74.3% in evaluating 

images gathered in the same year (2008). The authors also published the Moorea 

Labeled Corals dataset, the first coral benchmark dataset containing 400,000 

annotated points. 

In [8], CNNs are used for the automatic classification of benthic species. The 

authors start from an annotated dataset of registered images containing both 

reflectance and fluorescence information. A CNN is trained using only the 

reflectance, reflectance and fluorescence averaged per-pixel, only the 

fluorescence, and both information concatenated in a 5-channel network. The 

results demonstrate that the highest accuracy (90.5%) is achieved by the three-

channel network that uses the average between reflectance and fluorescence. 

Fluorescence is effective in increasing the contrast between corals and the 

background, while reflectance helps distinguishing among coral species. The 

comparison between the machine learning-based method proposed in [5] and 

CNNs using RGB images states the two approaches achieve a similar accuracies of 

around 87.8%. These works led to the release of CoralNet, a Web platform for the 

automatic, semi-automatic, and manual point-based annotation of benthic 

images. Recently, in [34], authors demonstrate a higher classification performance 

of CoralNet when benthic classes are restricted to functional groups, and the 

network is trained separately for different habitats. In [16], the authors compare 

the predictions of a standard RGB-based patch classification network and the 

annotation of human experts. They report an agreement in the benthic coverage 

estimation of about the 97% and a high reduction of the time required. These 

results demonstrate the utility of machine learning methods in underwater 

monitoring actions. 

In [26], the authors fine-tuned a pre-trained VGG network, demonstrating that, 

when tiles of different dimensions are cropped around each annotated point, the 

performance improves, and the class imbalance is reduced. Different scale 

representations are then resized and given as input to the network. Corresponding 

output vectors are fused using a max-pooling layer before proceeding with the 

classification. The proposed method reports an accuracy between 69.2% and 

82.8% in the various experiments performed. 

As previously stated, despite the number of sampled points, a patch-based 

approach is not dense enough to detect changes and carry out the spatial analyses 

of populations, and a per-pixel classification is needed. 

The manual classification of pixels is an extremely time-consuming process. 

In particular, when applied to corals, it requires precision in following intricate 

colony shapes and internal lesions (see Fig. 1). Manual semantic segmentation 

task by a trained biologist takes about an hour per square meter with majority of  
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Fig. 1: An example of manually segmented coral colonies. A benthic image on the  
left, the manually labeled areas on the right. 

 

the time dedicated to drawing the outline of colonies. To our knowledge, there is no 

available human-labeled benchmark dataset dedicated to the semantic segmentation of 

corals, so all the studies in the field first attempt to create an appropriate training dataset. In 

[3], the authors try to address the lack of densely-labeled datasets by proposing a 

method to propagate point annotations based on the manipulation of the 

fluorescence image channel. They then use the resulting labeled masks to fine-tune 

a SegNet [21] model. A few months ago, the same authors, in conjunction with 

the publication of [4], released the first extensive dataset of mask-labeled 

benthic images. This densely labeled comes from the propagation of sparse 

annotation following a multi-level superpixel approach. 

In [23], the authors introduce a custom annotation tool based on SLIC and graph cuts 

to generate the ground truth segmented dataset. They then train the patch-based CNN 

architectures Resnet152 and the semantic segmentation CNN Deeplab V2, scoring an 

accuracy on ten classes of 90.3% and 67.70%, respectively. In comparison with ground-

truth annotations, predicted areas show smoother borders and some 

misclassifications.  

One of the main limitations to the results in terms of accuracy in studies [3, 21, 4, 23], 

is due to the lack of per-pixel labeled images (see Fig. 1). Approximate labels on coral 

contours induce uncertainty in predictions. In recent years, there has been a growth 

in assisted per-pixel annotation tools able to speed up the preparation of training 

datasets. Among them, we report TagLab1, an AI-assisted open-source tool, 

designed for both large image labeling and analysis. 
 

3 Challenges in segmenting coral species 

 
Recognizing an object within an RGB image means determining some of its 

distinctive color and texture features. Effects like the color-shift due to light 

absorption, the scattering caused by water turbidity, the lens distortion and 

chromatic aberrations, can alter objects’ appearance and confuse both users’ 

interpretation and recognition algorithms. Corals, in large-area imagery, 

frequently display blurred outlines or appear as belonging to another class when 

framed under different distances. For all these reasons, species are more easily 

recognizable in situ, rather than from images. Ninio et. al. [28] report class-

dependent accuracies ranging from 96% for hard corals to 80.6% for algae when 

discriminating species from photographs compared to in situ observations. 

Automatic classification methods demonstrate lower performance on complex 

morphologies. Typically, CNNs for visual recognition are trained to recognize 

human-made objects, pedestrians, animals, and other classes that are not visually 

similar to marine organisms.  

This affects the accuracy in predicting those natural structures that are not 

adequately represented in the training dataset. Furthermore, a high intra-specific 

variability exists between specimens belonging to the same class. Fig. 2 shows 

multiple colonies with variable texture, color, and morphologies. Nevertheless, all 

these colonies, marked in yellow and green, belong to the same genus 

(Montipora). On the other hand, very similar individuals may belong to different 

classes, giving rise to false negative and false positive predictions.  

 
1 https://github.com/cnr-isti-vclab/TagLab 

https://github.com/cnr-isti-vclab/TagLab
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(a) Ortho-projection of a dense point cloud                        (b) Associated label orthos 

 

Fig. 2: Morphological variability among Montipora species. All colonies portrayed in 

this image (except one on the upper side, marked in light blue), belong to the same 

genus, despite different appearances. 

 

Finally, an additional obstacle encountered in the automatic identification of 

corals is the class imbalance, where the different classes in the training dataset are not 

equally prevalent. On the upper edge of Fig. 2, a single colony of Porites is marked 

in blue. In this area, Porites is an under-represented class, a hard case for the accurate 

automatic detection due to the lack of positive examples. 

 
4 Imagery and derivatives for the automatic recognition of species 

 
Ideally, to evaluate benthic changes over multi-temporal surveys, it would be 

desirable to exploit volumetric information. However, the automatic recognition 

of complex 3D shapes is complicated by occlusions and by the lack of fine 

geometric details essential for characterization. Classification in those cases must 

also consider the quality of the reconstructed geometry or the cloud sample 

density. The use of two-dimensional data is not only convenient, but also aligns well 

with historical data collected in situ or through imagery (e.g. percent cover, 

diameter, planar area). However, the automatic recognition of colonies from 

images, if not contextualized in the surrounding environment, has a limited 

relevance for the estimation of growth or death phenomena. Fortunately, the 

application of multi-view stereo reconstruction generates different types of inter-

related by-products such as calibrated images, reconstructed point clouds, and 

ortho-projections. Furthermore, image derivatives have different properties from a 

machine learning perspective. 

Images are a structured, high-resolution information source, arranged in a 

regular grid of pixels. Unregistered images do not contain information related to 

their context, the surrounding habitat, and the pixels in general have an unknown 

scale factor. When images are registered in a photogrammetric network with high 

feature overlap, the consistent (fully) manual per-pixel labeling is unfeasible. 

Point clouds provide three-dimensional information. Color inconsistencies 

(such as caustics) are typically attenuated by color blending or corrected using 

depth information. However, they are unstructured, non-uniform data with 

missing information (e.g. holes) due to occlusions. The resolution of a point cloud 

is usually lower than the original images, and their manual annotation requires the 

manipulation of corals in 3D space, making labeling slow and prone to errors. The 

adaptation of CNN architectures to 3D data requires the transformation of the 

unordered point clouds into a regular voxel grid, introducing other issues such as 

quantization and a large memory footprint. The study of deep architectures for the 

direct semantic segmentation of raw point clouds is promising [11]. To our 

knowledge, exist a few labeled point clouds of benthic landscapes, which makes a 

successful automatic 3D recognition an arduous task.  

Ortho-mosaics / ortho-projections are the ideal compromise between the 

readability of a single image and the three-dimensional information. Where depth 

and scale are known, ortho-mosaics can be generated from the same defined 

projection vector correcting perspective deformations, allowing for multi-

temporal alignment and change detection of organisms through time. Colors can  

be corrected coherently with depth. The fixed scale of ortho-mosaics helps in 

preserving the physical size of morphological features, a discriminant factor in 
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species recognition. Last but not least, ortho-mosaics are a commonly used tool 

for spatial and demographic analysis of populations. The use of ortho-mosaics 

reduces the number of features to learn but may introduce some other problems. 

Image orientation errors result in local blurring or contour ghosting effects. The 

stitching and projection process in ortho-mosaic creation might produce local 

image warping in correspondence   to depth discontinuities. For this reason, we 

propose the use of an orthorectified projection (i.e. ortho-projection) of the 

colored point cloud on the seabed plane to address the semantic segmentation. 

The use of ortho-projections avoids dealing with all stitching artifacts associated 

with ortho-mosaics. This geometric accuracy comes at a cost of a reduced 

resolution, ortho-projections exhibit a grainy appearance. 

All these representations of a three-dimensional scene have their advantages 

and disadvantages. In order to use all the available information, the ideal approach 

would be to exploit them in an integrated, multi-modal fashion (see Section 10).  

 
5  Case-study: the semantic segmentation of ortho-projections coming from the 

100 Island Challenge 

 
The 100 Island Challenge is a large-scale experiment, conducted by the Scripps 

Institution of Oceanography (UC San Diego) across islands in the Pacific, Caribbean, 

and Indian Oceans. Islands of interest have been selected to embrace a 

combination of human activity, oceanographic, and geomorphological conditions. 

Researchers want to assess which of these factors influences the structure and 

growth of benthic communities [14]. The spatial and demographic analysis of coral 

populations is conducted on top-down ortho-projections of dense point clouds to 

a horizontal surface plane. Surveys are conducted on the forereef at 10m depth 

for each island and repeated after 2-3 years to detect changes in reef populations, 

which are used to predict future community trajectories. 

At each island, roughly 6-8 10m x 10m survey plots are collected using a large 

area imaging approach. For each plot, 2000-3000 superimposed images are taken 

using a NIKON D7000 with an 18mm focal length in a bird’s eye view following two 

crossed lawnmower patterns, taken roughly 1-2 meters above the benthos. On the 

seabed are positioned scale bars and control points to form a network of 15 stable 

reference points.  

The 3D model reconstruction was performed using Agisoft Metashape [2]. Self- 

calibration was used to estimate the camera network. The point cloud was 

generated at “high” resolution, with depth filtering set to “mild”. To create the top-

down projection of the dense cloud, ecologists used the custom visualization 

platform Viscore [31]. Ortho-projections were annotated by manually drawing 

colony borders using Adobe Photoshop, resulting in a fine-scale segmentation 

ortho. This workflow is time-intensive, requiring about one hour per square meter. 

Figure 3 shows the plot HAW and its associated label ortho. HAW, as well as a large 

number of coral reefs in the Indo-Pacific, show coverage with three predominant 

genera including Porites (light blue), Montipora (light green and olive), Pocillopora 

(pink), plus other rare coral taxa. The remainder of the benthos, predominantly 

algae and sand were classified as belonging to a generic fourth class, Background, 

filled in black.  

 The 100 Island Challenge team conducted all underwater surveys, the 3D 

models' generation, the generation of ortho-projections, and the manual 

annotations used in the following study. 

The ultimate purpose of this research would be the automatic semantic 

segmentation of all reconstructed plots collected within the 100 Island Challenge 

project. Generalizing classifications to all ortho-projections created, starting from 

images coming from multiple cameras with varying parameters of reconstruction, 

different water conditions, and diverse species assemblages, is a difficult task. 

Moreover, there are over 800 reef-building coral species in the world, and their 

appearance varies across geographic regions. The dataset used contains eleven 

plots from seven islands, the labeled area covers about 100 square meters per 

ortho. Learning to distinguish all coral species requires a broader dataset, 

therefore, in this study, we focus the automatic recognition on three commonly 

occurring genera found on Indo-Pacific reefs: Porites, Montipora, and Pocillopora. 
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Section 6, presents the DL approach adopted in this large-scale project while 

section 7, reports the classification results. 

 
6 Proposed Method 

 
In CNN architectures, the low-level features maps store the local information to 

achieve an accurate pixel-wise outlining of the scene. Conversely, a correct 

classification results from considering the contextual information. The contextual 

information is added by increasing the receptive field of neurons, through the 

introduction  of  pooling layers. However,  pooling layers  progressively  downsizes 

the feature maps, resulting in coarser predictions. This effect is undesirable, 

especially in the presence of very minute details, as in the case of corals. The 

Deeplab V3+ network, introduced by Le Chen et al. in 2018 [9], is one of the state 

of the art architectures in terms of accuracy for semantic segmentation. Authors 

proposed an “encoder-decoder” architecture, which uses ResNet-101 as a feature 

extractor and natively adopts sparse convolutions instead of pooling layers. A 

sparse convolution, a convolution having a nucleus dilated by the presence of 

zeros, leads to sparse activation of neurons able to capture multi-scale details 

without increasing the number of parameters involved or downgrading the spatial 

resolution. More precisely, the DeepLab V3+ adopts separable sparse 

convolutions, composed of atrous convolutions with point convolution among the 

three channels of RGB images. The contributions from convolutions at different 

degrees of expansion are then fused into the same layer using an efficient 

interpolation scheme called Atrous Pyramid Pooling. The accuracy of DeepLab V3+ 

on Pascal VOC 2012 [15] (a vast image dataset typically used to assess the 

performance on a neural network on tasks such as object recognition and 

segmentation) is about 89.0% mIoU (mean Intersection over Union). 

Training a model from scratch takes time, computational resources, and a huge 

amount of data. Transfer learning [39] is commonly adopted in the automatic 

recognition field to adapt networks that have learned to solve a specific task to 

deal with new (similar) problems. In using a pre-trained model, the final classifier 

is typically replaced with a custom one, specific to the new task. When re-training 

pre-trained models, there are several choices: only train the classifier, train some 

layers and freeze the others, or leave everything unfrozen. As previously noted, 

coral classes have a weak visual similarity to the PASCAL VOC 2012 dataset used to 

train the original DeepLab V3+. In this circumstance, a simple fine-tuning of the 

encoder layers of the pre-trained model lead to poor results. Hence, we decided 

to leave all the parameters unfrozen, allowing for small updates of weights. To 

guarantee only minor adjustments, the learning rate was set lower than the one 

used during the original training. This compromise allows the network to learn 

dissimilar features from those contained in the Pascal VOC datasets but takes into 

account the limited amount of data available. Additionally, the low learning rate 

prevents the risk of losing previous knowledge and helps in reducing the 

probability of overfitting. 
 

 
6.1 Dataset preparation and training 

 
Since the plots differ in scale (see Table 6), all ortho-projections are first resampled 

at the same scale using Lanczos resampling. Labels are resampled utilizing nearest 

neighborhood sampling to preserve the values of the color codes. This rescaling 

operation makes the morphological features of coral classes uniform in size and 

resolution. The chosen common scale is 1.11 pixels/mm which is a good 

compromise to avoid too severe undersampling on higher-res ortho-projections 

and too much interpolation on lower-res ones.  

Co-registered products of rescaled plots (both the ortho-projection, stored as 

an RGB image and the label ortho) is clipped into overlapping tiles. Then, 65% of 

consecutive tiles are used for network training, 20% are used for validation 
and the remaining 15% for the test. RGB input tiles are pre-processed on-line by 

subtracting the average value per channel and cropping the central area to 513 × 

513 pixels after the data augmentation step (see figure 4). 
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(a) Investigated plot (b) Corresponding human labeled ortho 

 

Fig. 3: HAW plot (10 × 10 m). On the left the ortho-projection. On the right the 

corresponding manual annotations: Porites (light blue), Montipora (light green 

and olive) and Pocillopora (pink). 
 

 

Fig. 4: Proposed method. We first rescale the input orthos (ortho-projection and 

label ortho) to homogenize the morphological class features. Then, they are both 

subdivided into tiles to create training, validation, and test datasets. The trained 

network is used to classify an unseen ortho-projection automatically. The new 

ortho is clipped into tiles too; then each tile classification scores are aggregated in 

the final label ortho using the procedure described in Section 6.2. 
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On-line data augmentation includes horizontal and vertical flips, random 

rotation (10-degree range), random translation (50 pixels maximum in x- and y- 

coordinates), and a step of color augmentation. We tested two different strategies 

to make the representation of classes less sensitive to the color absorption related 

to depth: the on-line color augmentation and the Local Contrast Normalization 

(LCN) [20]. According to the results obtained, the on-line color augmentation 

improved the classification results (see Section 7). We simulate the typical pixel-

level alterations related to the formation of submarine images by randomly adding 

an RGB-shift, a random contrast change, CLAHE [35], a hue variation, a light 

intensity variation, and a blurring effect. The Albumentations library [1] offers a 

valid implementation of on-line color augmentation transformations. The DeepLab 

V3+ was trained for a variable number of instances (between 60 and 150, to avoid 

overfitting) using an SGD+momentum optimizer with adaptive learning rate decay, 

an initial learning rate of 10−5, and a decay rate of 10−4. Typically, class imbalance 

is solved by oversampling rare classes, undersampling predominant classes, or 

weighting the loss function. In this study, we use the cross-entropy loss function 

weighted by inverse frequency weights. 
 
 

6.2 Infer predictions on large ortho-projections 

 
Modern fully convolutional architectures, such as the DeepLab V3+, accept image 

inputs of any resolution. The only limit is available GPU memory.  Despite the high 

amount of memory in modern graphics cards used for Deep Learning applications, 

ortho-projections are too large to be processed entirely. A typical remote sensing 

approach to overcome this problem is to subdivide the ortho into several 

overlapping sub-orthos, classify them, and later aggregate classification results. 

Border regions of tiles are usually discarded because partially framed corals might 

induce misclassification errors. 

Multiple experiments were conducted to assess the best tile aggregation 

procedure. Orthos were processed after being subdivided in tiles of 1025 × 1025 pixels, 

with an overlap of 75% each. Predictions were then re-assembled using three 

approaches: without aggregating the classification scores, aggregating the 

classification scores using the average values, and aggregating the scores with a 

Bayesian approach [29]. Bayesian fusion considers the prior distribution of the 

specimen of interest. 
 
 

7 Results 

 
In supervised learning methods, datasets are generally divided into three subsets: a 

training set, a validation set (to select the best network and the optimal hyperparameters), 

and a test set. Performances on the test dataset (as a portion of the entire dataset) are 

commonly used to evaluate the network generalization capabilities. This applies to both 

single image datasets and orthos. However, the present species, their relative frequency 

on the seabed, as well as the image quality, are variable in reef monitoring. Ideally, the 

classifier must perform adequately on totally unseen orthos, even when belonging to a 

different geographical area. 
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Fig. 5: Summary of experiments to assess the performance of the Deeplab V3+ 

fine-tuned following the proposed approach. 
 

 

To reach this goal, we conducted several experiments. More precisely: 

1. Following the standard dataset partition: 

– We first trained and tested Deeplab V3+ on single plots, to determine its 

performance on dense ortho-projections. As not every point cloud has the 

same point density and noise; this test highlights how much data quality 

affects learning. 

– We trained the network on a dataset composed by a mix of tiles from 

different plots- 

2. We change the dataset partition method performing a “stress test”, evaluating the 

networks on totally unseen orthos from different geographical areas: 

– We tested a multiple-class classifier to distinguish the three genera of 

interest across plots from the same island. In a similar context, the 

environmental conditions and 3D reconstruction parameters are variable, 

while the colony morphology remains coherent. For the 100 Island 

Challenge project, typically eight plots per island are surveyed. Therefore, 

inferring the classification on all plots from a few annotated plots would 

allow for a considerable speed-up of the manual segmentation procedure. 

– We evaluated the performance of a binary classifier for Pocillopora. Given 

the high abundance of this genus, the binary classifier is trained such that 

it is independent by the geographical region. To assess its performance, we 

tested it on totally unseen orthos coming from different geographical 

areas. 

 

A scheme of these experiments is given in Figure 5. The plots used and the 

results obtained will be described in the next sections. Figure 3 and Figure 10 

display some of the eleven orthos included in the available dataset while related 

information are reported in Table 6. All ortho names with the suffix MIL belong to the 

same island. 
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Name Scale Resolution (pixels) Training tiles number 

V OS 1.1507 pixel / 1 mm 11081 × 11061 247 

ST A 0.979 pixel / 1 mm 12628 × 13520 391 

KHA 1.580 pixel / 1 mm 14647 × 13367 209 

MIL-M1 0.8097 pixel / 1 mm 7069 × 7433 204 

MIL-M3 0.997 pixel / 1 mm 9691 × 9520 260 

MIL-M4 1.1779 pixel / 1 mm 10707 × 10707 216 

MIL-M5 1.5385 pixel / 1 mm 15661 × 14761 285 

MIL-M6 1.0438 pixel / 1 mm 10709 × 10428 294 

FLI 1.229 pixels / 1 mm 10674 × 10320 197 

HAW 1.237 pixels / 1 mm 13415 × 13582 330 

MAI 1.450 pixels / 1 mm 13207 × 12659 190 
 

Fig. 6: All orthos cover an area of approximately 10 × 10 meters. The point density 

of the ortho-projections is slightly different between each ortho. 65% of the tiles 

of each ortho comprise the training datasets. The number of tiles available for 

training depends on the ortho scale and resolution. 

 
7.1 Training and testing on the same dataset 
 
7.1.1 Semantic segmentation of a single ortho 

 
The first experiment involves HAW and MIL-M6 to verify how much the 

performance varies between plots. HAW shows a relatively uniform appearance, 

characterized by low chromatic variation and a flat and sandy seafloor area. In 

this plot, Porites, Montipora, Pocillopora, and Background per-pixel frequencies 

are respectively the 20.78%, the 7.05%, the 2.57% and the 69.60%. 

Network predictions on the test set report an accuracy of 0.935 and a mean 

Intersection over Union (mIoU) of 0.883 (Table 1). Figure 7 shows the DeepLab V3+ 

results for taxonomic classification, demonstrating the ability to distinguish dead 

colonies within the same class. Dead colonies and dead portions of living colonies 

are correctly classified as belonging to the background class. Most mis- classified 

pixels fall on the boundaries of the automatically segmented regions, which display 

a slightly smoother outline to those of the ground truth classes. 

 
The same experiment was repeated on MIL-M6. As visible in Figure 10, MIL-

M6 has a steeper slope and large structures where the color changes due to depth. 

While the Background class of HAW contains mostly sand, while MIL-M6 contains 

additional algal and coral species with high coral coverage (see Figure 10). MIL-M6 

tiles are slightly noisier as visible in Figure 8. The Deeplab V3+ trained and tested 

on MIL-M6, reports an accuracy of 0.860 and a mIoU of 0.795 (Table 1). 

In the MIL-M6 plot, the progressive absorption of the color with depth is 

visible, therefore we tested the effect of both the LCN and color augmentation in 

tiles during pre-processing. LCN slightly degraded the performance of the 

automatic classifier, reaching an accuracy of 0.835 and an mIoU of 0.760 (Table 1). 

Con- versely, the CNN trained and tested on MIL-M6 exploiting color augmentation 

reached an accuracy of 0.880, and an mIoU of 0.817 (Table 1). On-line color 

augmentation demonstrated an improved generalization, so we chose to apply it 

in all the following experiments. 
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                              (a) Input                                             (b) Results of the classification 

 

Fig. 7: Network predictions in a crop of the test area of HAW. The figure displays Porites 

in light blue, Pocillopora in pink, Montipora in olive green. Dead Pocillopora (circled) is 

correctly classified as Background, as well as some dead portions of Porites. 

 
 

Experiment Accuracy mIoU 

HAW 0.935 0.883 

MIL-M6 0.860 0.795 

MIL-M6 + LCN 0.835 0.760 

MIL-M6 + online col. aug. 0.88 0.817 
 

Table 1: Results of the experiment on a single plot. 
 

 

  
(a) HAW training input tile 
(detail) 

(b) MIL-M6 training input tile 
(detail)

Fig. 8: Above a comparison with a tile of HAW and MIL-M6 (see Figure 3 and 10). 

MIL-M6 is on average noisier leading to more visual artifacts. 

 
7.1.2 The semantic segmentation of heterogeneous datasets 

 
For the second experiment, the Deeplab V3+ was trained and tested on a dataset 

mixing four plots variable in color, resolution, and geography. In particular, MAI 

portrays a flat seabed (from a distant viewpoint) with a few small colonies while 

MIL-M3 can be characterized as a low-resolution point cloud distinguished by 

sensible color variation among colonies due to a spur and groove formation. Finally, 

FLI displays a sloped seabed with a wide color variation due to depth changes. The 

four ortho-projections (including HAW) were cropped into a training, validation, 

and test area, taking care to maintain consistent species variability. Overall 

frequencies related to the four classes on the entire four orthos training set are 

respectively 13.99%, 13.66%, 7.55%, and 64.8%. The purpose of this experiment is 

seeing if different ortho-projections with variable point cloud resolutions are 

mixable in the same dataset without impacting the predictions. Predictions 

reached an accuracy on the test area of 0.921 and a mIoU of 0.858 after 90 epochs. 

The performance on MIL-M3 test tiles were the lowest, reporting an accuracy of 

0.821 and an mIoU of 0.698. MIL-M3 has a lower image quality, along with a 

decreased representation of tiles in the training dataset. Additionally we can 

observe the presence of a distinctive Pocillopora species (Pocillopora zelli) 

morphologically different from other individuals of the same genus (see Fig. 9). 
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                                          (a) RGB tile (b) Human-made labeling 

 

(c) Predicted labeling (d) Overlay between the two 

 

Fig. 9: A Pocillopora colony (pink color) misclassified as Background (purple), likely due 

to large morphological variation between species. 
 

7.2 Evaluation of performance on totally unseen orthos 

 
7.2.1 A 4-class classifier for a single geographical region 

 
During the network training, a validation step is carried out after fixed amounts of 

epochs to asses the network performances. In the previous experiments, the 

performance was measured on an unseen partition of validation tiles belonging to the 

same plots. At the end of the training, the weights chosen are the ones that obtained 

the best results on the validation set. In this investigation, the validation of input 

tiles from totally unseen orthos compared to those belonging to the training 

orthos helps in choosing the network that works best for an unseen underwater 

scenario. In other words, we select the network that best recognizes the coral taxa, 

regardless of the three-dimensional reconstruction or environmental conditions. 

We train the DeepLab V3+ on a dataset composed  of  training  tiles  from MIL-

M5 and MIL-M6, but we validate the network on a mixed set, composed 

validation tiles from MIL-M5 and MIL-M6 in addition to tiles from MIL-M3 (see 

Figure 10). All the MIL orthos have been collected on the same island. 

The resulting network was first tested on the original test set composed of 

MIL-M5 and MIL-M6, reaching an accuracy of 0.915 and a mIoU of 0.847 (high 
values, as expected). For the two new test orthos, MIL-M1 obtained an accuracy of 0.886 

and a mIoU of 0.801, while MIL-M4 had an accuracy of 0.972 and a mIoU of 0.947. Such a 

significant difference in predictions on new orthos can be explained by their respective 

resolution, the morphological complexity of MIL-M1 (see Figure 10), and the dense 

distribution of corals on the ortho. 

We used the T-SNE algorithm [25]) to project the features extracted from the encoder 

into a 2D scatter plot (see Figure 11). The visual analysis of plotted high-level features 

reveals confuse boundaries between classes. Since the classes are not clearly separated, 

the classification is uncertain. As visible, the background of MIL-M1 is characterized by high 

morphological complexity. Results proved that predictions obtained from the training of 

MIL-M5 and MIL-M6  could be inferred on other plots belonging to the same island MIL-

M1, and MIL-M4. Finally, CNN was also tested on FLI, a nearby island in the Pacific Ocean 

containing similar species, reporting an accuracy of 0.831, and a mIoU of 0.711. Results are 

reported in Table 2. 
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(a)   MIL-M1 (b) MIL-M3 

 

(c)  MIL-M4 (d) MIL-M5 

 

(e)  MIL-M6 (f) FLI 

 

Fig. 10: Examples of plots included in the dataset.  DeepLab  V3+  was  trained  on MIL-

M5 and MIL-M6, validated on MIL-M3, and tested on MIL-M1  and MIL-M4.
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(a) MIL-M1 (b) MIL-M4 

 

Fig. 11: Features visualization using the T-SNE algorithm [25].  Features of MIL-M4  are 

better clustered compared to the ones of MIL-M1. An higher morphological 

complexity and a different coral distribution characterize the background class of MIL-

M1 (black color) which blends with coral classes.  

 

 
 

Test set Accuracy mIoU 

MIL-M5 + MIL-M6 0.915 0.847 

MIL-M1 0.886 0.801 

MIL-M4 0.972 0.947 

FLI 0.831 0.771 

 

Table 2: Performance of the CNN trained on MIL-M5 and MIL-M6, validated with 

tiles coming from MIL-M3, and tested on the plots reported. Performance on MIL 

plots are overall acceptable. FLI is a nearby island with the same species. 

 

 

7.2.2 Binary classifiers for orthos from different geographical origins 

 
Large-scale recognition of corals is accomplished with a global photo coverage of 
the seafloor, not from high-resolution images of single colonies. Starting by a few 
meters from the seabed, some coral taxa can hardly be distinguishable, while others have 
more recognizable shapes, such as Pocillopora. Furthermore, Pocillopora, together 
with Porites and Montipora, are commonly occurring taxa, often covering a 
significant proportion of the benthos. For this reason, the creation of large datasets 
where all species are adequately represented can be accelerated by using a 
classifier that automatically labels common and easily recognizable species, leaving 
the problematic cases to biologists. With this goal, we train Deeplab V3+ to classify 
pixels of Pocillopora only, i.e., two classes: Pocillopora and Background. 

A Pocillopora binary classifier was initially trained and tested starting from the 

four-plot dataset previously described. In order to reduce the class imbalance 

problem we apply a straightforward undersampling strategy: the tiles that do not 

contain Pocillopora pixels are removed. The Pocillopora pixels in the global dataset 

were about 9.33%, after the removing 16.73%.   

 
In classifying Pocillopora alone the DeepLab V3+ reached an accuracy of 0.956 

and a mIoU of 0.921 on a test dataset of tiles containing Pocillopora pixels, but an 

accuracy of 0.982 and mIoU 0.966 when calculated on the entire bottom where 

there were more Pocillopora pixels than ’Background’. Figure 12 compares manual 

segmentation (b), four-class automatic semantic segmentation (c), and automatic 

semantic segmentation of Pocillopora (d). The boxes highlight the most significant 

differences. In box D, Porites is separated in several segmentations by the human 

operator but is considered a single colony by the automatic algorithm. In the box E, 

a piece of Pocillopora is missing in the manual annotation but is correctly identified 

in both the automatic ones. In the box G, a small portion of Pocillopora is not 

detected in the automatic 4-classes segmentation, but it is correctly identified in 

the automatic binary one. The same situation is found in box A and F, although it 

is not clear which is the preferable solution. Box B contains a Pocillopora colony 

with much more rounded profiles than necessary. This effect is slightly less 
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pronounced in the 2-class segmentation. Finally, in the bottom right figure, on the 

lower edge of the tile, some pixels of Pocillopora are mistakenly classified. This is 

a common problem with pixels falling on the edges of the tiles: networks may fail 

in classifying  

 

  
(a) RGB tile (b) Human-made labeling 

 

(c) Prediction, 4 classes (d) Prediction, 2 classes 

 

Fig. 12: Results of automatic segmentation using DeepLab V3+ trained to classify 
respectively 4 and 2 classes (Pocillopora and Background). The area displayed has 
dimensions of 1026 × 1026 pixels. 

 

partially portrayed objects. The experiment was repeated, adding tiles to the 

validation dataset belonging      to different orthos, as in the previous experiment.  The 

intent was training a binary classifier that works reasonably well independently of the 

geographical area. HAW, FLI, MAI, MIL-M3, and MIL-M5 were used for training, 

MIL-M1, MIL-M4, and VOS for the validation, while MIL-M6, was employed for the 

test. The networks revealed an accuracy and a mIoU of 0.970 and 0.949 on its standard 

test. Performance on validation datasets were quite similar, 0.952 accuracy and 0.915 

mIoU on MIL-M1, and 0.980 and 0.964 on MIL-M4. Finally, predictions on unseen 

orthos never ranged from the 0.940 accuracy and 0.891 mIoU on MIL-M6 to 0.970 

and 0.949 on STA. Orthos for which the binary classifier worked best were those with 

a homogeneous background class and without species morphologically similar to 

Pocillopora (see Table 3). Even if the accuracy values reached are high, predictions still 

require some corrections by the human expert to achieve the data quality necessary 

to detect changes in the colonies. Binary classifiers are a powerful resource to 

automate the segmentation of common classes, and, according to these experiments, 

they are applicable in any geographical area. 

Table 4 summarizes the results. From a qualitative point of view, the 

aggregation of the scores “blends” the abrupt classification discontinuity between 

adjacent tiles, as shown in figure 13. 

 
Test set Accuracy mIoU 

HAW + FLI+ MAI + MIL_M3+MIL_M5 0.970 0.949 

MIL_M1 0.9526 0.915 

MIL_M4 0.980 0.964 

MIL_M6 0.940 0.891 

ST A 0.970 0.949 

Table 3: Performance of the binary classifier trained on HAW, FLI, MAI, MIL-M3 

and MIL-M5, validated on MIL-M1, MIL-M4, and VOS, and tested on the 

following sets. 
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Method Accuracy mIoU 

No fusion 0.942 0.894 
Average 0.942 0.895 

Bayesian fusion 0.944 0.897 

 

Table 4: Classification results aggregating scores of overlapping tilesusing different 

methods. 

 

 
8 Aggregation 

 
As described in Section 6, the segmented overlapping tiles are aggregated in a 

single segmented ortho. The overall performance of the different strategies 

calculated on the plot HAW are reported in Table 4. Since the Bayesian fusion 

requires a priori knowledge of the distribution of the coral taxa, the average fusion 

is sometimes preferred. Even if numerical results are close to the tile re-

arrangement without fusion, these strategies have a positive impact on the quality 

of the segmentation, as shown in Figure 13. 

 

 

       
 
           (a) Input Tile        (b) Ground truth label    (c) No aggregation      (d) Bayesian fusion  

    
Fig. 13: Score aggregation across multiple overlapping tiles. Without aggregation 

predictions on tiles, the sides can be inconsistent (as shown in (c)), resulting in 

visible area ‘cuts’ after the tiles merging. The Bayesian fusion (d), as well as the 

average aggregation, mitigate the problem, producing a final labeling closer to the 

ground truth (b). 

 

9 Discussion and Conclusions 

 
The collection of underwater imagery for monitoring and research has rapidly 

expanded, leading to the accumulation of millions of images from coral reefs 

alone. This abundance presents challenges in annotating and extracting 

information from the images, as the ability of humans to manually annotate 

imagery is far outpaced by the rate of collection. To date, the development and use 

of semi-automatic and automatic annotation tools which have been adopted by 

coral reef scientists has accelerated the pace of image annotation [7]. However, 

these tools are limited in the type of data that can be extracted, as they only assist 

with point-based annotations, used for percent coverage estimation. While point 

based coverage have a widespread utility in describing current community 

assessments, they arguably lack the necessary information to detect change, 

understand the mechanisms driving that change, and make predictions about the 

future trajectory of these communities [32]. Demographic approaches are needed 

for an informative change detection, which requires data on size and abundance 

of colonies over time [18]. In the context of image analysis, this means semantically 

segmenting colonies of corals to a high degree of accuracy. The spatial information 

preserved when colonies are segmented across a broader landscape provides 

additional information about the spatial distribution inside a community, which 

can provide insights into biological and physical mechanisms which structure a 

population [14], especially when compared across life stages [30], as well as 

characterize the current successional stage [27]. Manual segmentation is a 

laborious process, even more than point-based annotation. Given the value of 
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ecological information provided by segmentation data, there is an urgent need for 

this process to become accelerated using automatic recognition. 

 

Results obtained trained the DeepLab V3+, following the standard partition of 

dataset are remarkable (see Figure 7). However, from a practical perspective, the 

networks must infer predictions on new orthos, meaning they need to generalize. 

The enormous diversity of coral species presents a major issue, further 

complicated by the variability in appearance within and across geographic regions. 

Therefore, trained semantic segmentation networks were used on unseen orthos 

in the validation and test sets. Following this stress test procedure, we discuss: 

Multi-class classifiers, which perform better on orthos from a constrained 
geographic region. On unseen test orthos they reach an accuracy in the range 
of [0.886 − 0.972] and a mIoU between [0.801 − 0.947]. 

Binary-classifiers trained to recognize the common species across various regions of 
the globe. These classifiers generate predictions on unseen orthos with accuracies 

between [0.940 − 0.970] and a mIoU between [0.891 − 0.949]. 

These results, compared with state of the art, score a better accuracy because 
of network improvements, training strategies, the introduction of orthos as 
working domain, and the use of accurate, manually-segmented, per-pixel  labels 
for the network training. To date, the main challenges lie in: 

1. the improvement of the generalization in order to deal with the extremely 

varied appearance of coral species. 

2. the improvement in outlining specimen borders. As can be seen in Figure 12, 

the bulk of the uncertainty on the classification of coral colonies falls on the 

contours’ pixels. 

We expect that the performances can be improved when training on larger, 

taxonomically-rich datasets, as they might contain sufficient data for the network 

to learning rare coral taxa and for differentiating between species of the same 

genus, dealing misclassification caused by intra-species or intra-category morphological 

variability (see Figure 9). This method can be extended to the recognition of other 

species such as mollusks or encrusting algae. However, translucent or non-rigid, 

floating species, such as Macroalgae or seagrass, cannot be shaped by image-

based 3D reconstruction methods, and require a direct analysis from images. 

The automation of segmentation through Deep Learning techniqu ideally 

reduces the annotation times from the current 1h per square meter to the ten 

minutes of processing for a single 10m × 10m plot (which can be further improved 

with more computational resources). However, this process might involve a manual 

editing step to correct errors. 

Deep learning approaches assume that training and test sets contain objects 

following a similar distribution. Unfortunately, natural distributions of animal 

populations do not always meet this criterion. As it can be seen from the 

generalization tests of the 4-class and binary classifiers, the lowest accuracies 

occurred on orthos presenting a colony distribution most dissimilar from those in 

those orthos used for training. Domain adaptation is a learning task that takes into 

account the different features distributions between training and test sets.  In this 

study, we reduce the domain adaptation problem by acting on the validation set 

and by selecting the best-performing network on new orthos. 

 
10  Future directions 

 
The 3D information is crucial to evaluate the volumetric change caused by the 

structural growth or erosion of coral reefs. 

A significant number of studies focus on deep learning methodologies for 3D 

reconstruction and 3D semantic segmentation. However, according to a recent 

survey [17], current architectures are not able to produce accurate results over 

high-resolution reconstructions of complex objects, such as in the case with corals. 

Semantic segmentation of point clouds is a more mature field, where several 

solutions have been proposed, but many of those focus on indoor scenes. 

Moreover, most methods rely on volumetric representation [33], [10], affecting 

the resolution of the final segmentation. Other studies exploit a combination of 
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RGB-D representations of the scene and oriented images to solve the 3D semantic 

segmentation task. Dai et al. [12] presents a 2D/3D architecture (3DMV) for the 3D 

semantic segmentation of indoor scenes starting from RGBD scans. The 3DMV 

network joins feature maps extracted from RGB images together with 3D features 

of geometry producing per-voxel predictions. 

An exciting aspect of working with ortho-projections derived from 3D image- 

based reconstructions is the opportunity to adopt a multi-modal approach. The 

manual annotation of ortho-projections is faster than the direct annotation on the 

point cloud, and avoids possible inconsistencies commonly found when annotating 

overlapping images. Starting from the labeled orthos, per-pixel class information 

can be propagated consistently through the reconstructed 3D geometry, and then 

back to the original images. 

Section 9 highlights the promising performance of the proposed approach; however, 

despite the high accuracy values, in some cases, predictions might require some manual 

editing to achieve the data quality necessary to detect colonies changes. At the same time, 

we discussed how these excellent results are partially due to the high accuracy of the 

available per-pixel label. These annotations, which takes about one hour per square meter 

when performed in Photoshop by expert ecologists, are too much time-consuming to 

generate a benchmark dataset. For these two reasons, we developed TagLab1. This assisted 

annotation software, following a human in the loop approach, speed up per-pixel manual 

annotation, allowing at the same time the edit of automatic predictions. TagLab integrates 

the segmentation networks described in this work as well as another agnostic 

segmentation network explicitly fine-tuned for coral segmentation. TagLab also provide 

tools for image analysis and comparison of multi-temporal surveys. Future studies will be 

devoted to assessing how much the assisted annotation speeds up the experts' work. 

The class imbalance and the smoother appearance of the predicted labels are 

two issues that we will face in future studies, starting from exploring different loss 

functions. The Boundary Loss [22], that has proved to be an effective solution to 

improve the contours prediction in imbalanced datasets. The Focal-Tversky [38], 

which mitigates the class imbalance problem without the need of pre-calculating 

class weights. 
 

 
ACKNOWLEDGMENTS 

 
Authors would like to thank the Sandin Lab (Scripps Institution of Oceanography, 

UCSD) for the collaboration and for kindly providing all the annotated orthos 

presented in this study. We thank Marco Callieri for his useful suggestions on how 

to improve the manuscript.  

 
 

References 
 

1. E. Khvedchenya V. I. Iglovikov A. Buslaev, A. Parinov and A. A. Kalinin. Albumentations: 

fast and flexible image augmentations. ArXiv e-prints, 2018. 
2. Agisoft Metashape, http://www.agisoft.com/ . 

3. I. Alonso, A. Cambra, A. Muoz, T. Treibitz, and A. C. Murillo.  Coral-segmentation: Training 
dense labeling models with sparse ground truth. In 2017 IEEE International Conference on 
Computer Vision Workshops (ICCVW), pages 2874–2882, Oct 2017. 
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