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Automatic modeling of cluttered multi-room floor plans from
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Figure 1: Overview. Starting from a small set of overlapping panoramic images of a multi-room environment, we perform multi-view registration and extract, in
parallel, the masks of interior objects visible in each image. Using mutual visibility and photoconsistency information, we group panoramas together with their
masks into rooms sets, which are analyzed using a plane-sweeping approach to extract pose and size of interior objects. Finally, all the recovered information is
exploited for the extraction of room boundaries and interconnections, leading to a structured indoor model in terms of rooms bounded by walls, ceiling, and
floors and containing a set of objects described in terms of their bounding volumes.

Abstract
We present a novel and light-weight approach to capture and reconstruct structured 3D models of multi-room floor plans. Starting
from a small set of registered panoramic images, we generate automatically a 3D layout of the rooms and of all major objects
inside. Such a 3D layout is directly suitable for use in a number of real-world applications, such as guidance, location, routing, or
content creation for security. Our novel pipeline, which can handle cluttered scenes with complex geometry that are challenging
to existing techniques, introduces several contributions to indoor reconstruction from purely visual data. In particular, we
automatically partition panoramic images in a connectivity graph, according to the visual layout of the rooms, and exploit this
graph to support object recovery and rooms boundaries extraction. Moreover, we introduce a plane-sweeping approach to jointly
reason about the content of multiple images and solve the problem of object inference in a top-down 2D domain. Finally, we
combine these methods in a fully automated pipeline creating structured 3D model of a multi-room floor plan and of the location
and extent of clutter objects. The effectiveness and performance of our approach is evaluated on both synthetic and real models.
CCS Concepts
• Computing methodologies → Computer graphics; Shape inference; Reconstruction;

1 Introduction

Creating high-level structured 3D models of indoor scenes from
captured data is a fundamental task in many fields [BTS∗17]. In this
context, several applications, such as the generation or update of
building information models (BIM) mostly focus on determining the
architectural structure in terms of room walls, floors, and ceilings
[MMJV∗14, TCZ15]. For many others, such as guidance, security,

evacuation planning, location awareness and routing, information on
the interior clutter, in terms of 3D footprint of major indoor objects
is also required [IYF15].

While a wide variety of solutions exists for capturing 3D infor-
mation on indoor environments, from mobile laser scanners to a
active depth sensors, the wide availability of mobile cameras, e.g.,
on smartphones, is making purely image-based methods very ap-
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pealing. The visual capturing process is particularly fast, simple
and cost-effective when exploiting emerging 360◦ cameras, since
a good coverage of a complex environment generally requires very
few shots, and such a panoramic coverage provides a visual repre-
sentation readily usable in navigation applications [PGGS16].

Inferring indoor structure just from visual data is, however, not
an easy task, due to the many ambiguities resulting from sparse
coverage, occlusions, and lack of visual detail. The topic has thus
been the focus of much research in the past decade. Current solu-
tions, however, either require a fairly dense sampling generated by
a large number of images in a texture-rich environment, or handle
separately object and boundary reconstruction, often imposing very
heavy constraints, requesting manual interventions, or addressing
only single-room environments (see Sec. 2).

Our approach In this work, we propose a novel light-weight ap-
proach to compute, from a small set of registered panoramic im-
ages, a multi-room 3D layout in terms of room boundaries and
3D bounding volumes of all major objects (see Sec. 3). We use
mutual visibility information and photoconsistency to create an in-
terconnection graph between poses in order to split the image set
in different room groups. We exploit this graph to simplify interior
object identification and to support room identification and room
boundaries extraction. The pose and size of the clutter objects in
each room is recovered by starting from a per-image segmentation
that identify the masks of indoor objects, and then using a virtual
plane sweeping approach to jointly perform object inference in a
top-down 2D domain using all the images associated to a room. The
resulting 3D clutter model of all rooms, in terms of image mask,
position, orientation and dimensions of each object, is then exploited
to enhance image segmentation and geometric context reasoning
for the room identification and room geometry extraction phases.
As a result, the final model is partitioned into interconnected rooms
bounded by walls, ceiling, and floors and containing a set of objects
described in terms of their bounding volumes.

Contribution At the system level, we contribute a novel approach
extending and combining in a non-trivial way several state-of-the-art
solutions for indoor reconstruction from sparse panoramic images.
We also introduce the following novel specific techniques:

• We introduce a photo-consistency approach to order and group
the panoramic images in a connectivity graph. The core idea of
our method is to detect rooms by clustering nodes in a fully con-
nected graph, whose edges are weighted by the similarity among
images under a specially crafted warping transformation. This
grouping improves both object recognition and room structure
identification, filtering undesired contributions from other im-
ages, such as, for example, images to far from the object or parts
of other environments visible through open doors. Compared
to previous approaches [PGP∗18, CF14], which try to roughly
infer walls position from the sparse input 3D points to estimate
space partitioning, our approach provides more flexibility and
robustness (see Sec. 7).
• We introduce a plane sweeping approach to solve the problem of

object inference in a top-down 2D domain starting from single-
image clues. To do this we define a specific parameterization, to
transform in the same model space the contribution of different

images, and a novel loss function, to evaluate object hypothesis.
This approach allows us to by exploiting clues from different im-
ages, even if they do not fit on cuboids [ZSTX14]. Moreover, the
approach is designed to work with an extremely limited number
of images per object (e.g. 2-3), without involving the dense scene
coverage required by other methods [IYF15, BFFFS14].
• We exploit the model of foreground clutter and the image group-

ing to enhance images segmentation and to complete rooms ge-
ometry extraction, i.e., to compute walls, floor and ceilings. This
extra information improves current methods for indoor recon-
struction from panoramic imagery (e.g., [CF14, YZ16, YJL∗18,
PGP∗18]), which are mostly based on background segmenta-
tion via super-pixels. By exploiting clutter analysis in large-scale
multi-room modeling, we produce a model which is more accu-
rate and complete given the same number of panoramic images,
as demonstrated by our results (Sec. 7).

2 Related Work

3D reconstruction and modeling of indoor scenes has attracted
a lot of research in recent years. Resulting models usually are
application-dependent, ranging from geometric to fully semantic re-
construction, and scale-dependent, from single rooms to large-scale
scenes [IYF15]. In this work, we focus on pipelines from generat-
ing, from purely image data, structured geometric abstractions of
multi-room environments with clutter [HDGN17, ZCC16].

From the capture point of view, many works require a fairly
dense 3D point cloud of the environment. While in the past this
was only possible with costly laser scanners, this approach is be-
coming more widespread due to the emergence of new sensors,
including mobile RGB-D sensors. The methods, however still re-
quire a lot of post-processing to extract structured models from raw
data [MMP16]. When it comes to the construction of a real 3D
model (e.g., a mesh), existing methods typically produce a set of pla-
nar patches at a room scale [XAAH13], simple primitives for a part
of a scene [GPMAL09], a dense mesh from a voxel grid [TCZ15] or
a polygon soup without any structure or semantics [XF14]. For large
scenes, current state-of-the-art methods solve room segmentation
and reconstruction in a top-down 2D domain [TCZ15, MMP16]. A
prominent example is the work of Ikehata et al. [IYF15], which
propose a 3D modeling framework that reconstructs an indoor scene
as a structured model exploiting panoramic RGB-D images.

In this work, we focus on purely image-based techniques, which
are gaining popularity in several domains, since they are based
on widely available and low-cost sensors. Even though, at least in
certain situations, the accuracy of dense image-based methods has
shown to be competitive with laser sensor systems at a fraction of
the cost [SCD∗06], the lack of explicit 3D information requires
aiding reconstruction by imposing domain-specific constraints. For
example, several authors exploit the heavily constraining Manhattan
World assumption to reconstruct the 3D structure of moderately
cluttered interiors e.g., [FCSS09, FMR11, TXLK11]) or the 3D
footprint of interior objects (e.g., [LGHK10, HHF12]).

A number of authors have focused on joint estimation of room
shape and object location in the single-view case, typically to
infer room layouts from a single image. A classic approach,
achieving good success with interiors containing large pieces
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of furniture, is to analyze the scene by fitting 3D cuboid mod-
els [LGHK10, HHF10, HHF12]. These methods have been extended
through Markov chain Monte Carlo (MCMC) sampling of part-
based 3D object models [DBK∗13] in order to achieve more accu-
rate recovery of fine structures. Schwing et al. [SFPU13] used a
branch-and-bound method to jointly infer 3D room layout and ob-
jects that are aligned with the dominant orientations, while Satkin et
al. [SRLH14] proposed a top-down matching approach to align 3D
models from a database with an image. The latter method employs
multiple features to match 3D models to images, including pixel-
wise object probability, estimated surface normals, and image edges.
CNNs have also been used for the same purpose, as in the work by
Su et al. [SQLG15], in which a CNN was trained for pose estimation
using rendered models of 12 object categories from the PASCAL
3D dataset [XMS14], or in the work of Tulsiani et al. [TKCM16],
which combine object localization and reconstruction from a single
image using CNNs for detection, segmentation, and view estimation.
These single-image methods are promising, but strictly limited to
very small scenes, visible from a single point-of-view, and contain-
ing a limited number of object categories.

With the goal of minimizing user efforts and simplify model-
ing of entire rooms, recent state-of-the-art have extended single-
image analysis to omnidirectional images. Some approaches exploit
a super-pixel segmentation and an analysis of edges to recover
room layout [YZ16] and depth estimation of the whole panoramic
image [YJL∗18]. These methods are limited to Manhattan-world
environments and do not return a structured model. Recent data-
driven approaches [ZCSH18, YWP∗19] have also demonstrated
success in recovering the 3D boundary of a single uncluttered room
meeting the Manhattan World constraint, or to infer the whole con-
text of a cluttered room containing a limited set of object cate-
gories [XSKT17, ZSTX14].

Multi-room environments typically require the joint analysis of
images taken from multiple points of view. Bao et al. [BFFFS14],
similarly to our work apply both single-view and multi-view reason-
ing to extend the number of recognized categories, but, in contrast to
our work, focuses again on small scenes (i.e., room corners) and re-
quires using a large number of pin-hole images (at least 10 images).
The recent emergence of consumer spherical cameras promises to
improve visual capture of indoor environment, since each image
covers the complete environment around the viewer, simplifying
geometric reasoning, and very few images are required for a large
coverage, simplifying the capture process and the features tracking.

Cabral et al. [CF14] adopted stitched equirectangular images
to improve indoor reconstruction provided by a dense multi-view
pipeline [FCSS09]. As clutter and homogeneous zones in indoor
scenes tend to leave large reconstruction holes for image-based
methods, their method exploits the labeling of the panoramas to
complete the multi-view reconstruction obtained from pin-hole im-
ages. However, such an approach required a considerable number
of images and a dense point cloud, in addition to considerable ef-
forts in terms of user interaction and processing time. Sharing the
same simplified segmentation of Cabral et al. [CF14] (i.e., wall,
ceiling and floor), Pintore et al. [PGP∗18] recover the 3D layout of
multi-room floorplans from a set of spherical images without involv-
ing externally calculated 3D data, by combining sparse multi-view

features from images registration and single image analysis. Most
panoramic imagery methods [YZ16, CF14, PGP∗18, PPG∗18] base
image segmentation of on color homogeneity of indoor structures, a
reasonable assumption for boundary structure but not for foreground
objects.

In this work, we improve over prior techniques by automatically
determining rooms, recovering clutter, and improving the accuracy
of room shape recovering by effectively fusing multiple information
sources coming out of room segmentation and clutter analysis.

3 Overview

Our pipeline, illustrated in Fig. 1, starts from a small set of omnidi-
rectional images in the equirectangular projection. As prerequisites
we assume that (a) input images are aligned to the gravity vector;
(b) multi-view registration is possible; (c) target objects are visible
from at least two point-of-view; (d) the bases of objects are below
the camera horizon.

Constraint (a) is easily obtained on all modern mobile devices
that have an IMU on board. Otherwise, vertical alignment can be
obtained by rotating the global up vector so that the vertical edges are
aligned with the vertical direction in the images. We thus consider
vertical alignment to be a separate problem to be solved prior to
the application pipeline, and we work only with oriented images.
Constraint (b) and (c) require that images have at least some overlap,
to ensure multi-view registration and detection of 3D features. In
practice, this is obtained by 2-4 images per room. The last constraint
is met by the vast majority of indoor objects, which are lying on
the floor or attached to wall at low heights (e.g., furniture, sinks).
The only objects that do not meet this constraint are objects hanging
from the ceiling (such as lamps) or at the top of the walls (such
as, for instance, some air conditioners). Such objects, however, are
typically not necessary for most applications where it is important
to determine room shape and walkable floor space.

Given just a set of images, we start by performing a multi-view
registration to recover camera poses, multi-view 3D features and a
bounding volume of the entire scene. In parallel, for each image, we
classify image pixels into foreground (clutter) and background (wall,
ceiling, and floor layout) exploiting a state-of-the-art approach for
single panorama analysis [YJL∗18]. As a result, we determine a
mask for each panoramic image containing pixels from foreground.
We then create an interconnection graph between poses, according
to their mutual visibility and photoconsistency, in order to split the
image set in different room groups (Sec. 4). We exploit this graph,
together with poses, 3D features, and masks, to simplify object
recovery (Sec. 5) and to support room boundary extraction (Sec. 6).
Pose and size of the clutter objects (Sec. 5) are determined from the
clutter segmentation and the room grouping using a virtual plane
sweeping approach (Sec. 5.3), based on a specific parameterization
(Sec. 5.1) and cost function (Sec.5.2). Clutter models are then used
to enhance segmentation of the input images into floor, ceiling, and
floor superpixels and to guide the extraction of room boundaries
and interconnections (Sec. 6). As a result, we recover a structured
3D model of the floorplan comprehensive of clutter objects. We
demonstrate the effectiveness and performance of our approach on
different indoor scenes from public available datasets. (Sec. 7).
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4 Partitioning of the panorama set
The room grouping aims to partition, without manual intervention

or prior layout knowledge, the image set into rooms, in order to
guide all subsequent analysis and geometric reasoning operations.
Such a task requires the definition of a similarity measure between
images, which should be high for images seeing taken in the same
room, and low for all others.

Following this idea, our algorithm works in two steps. In the first
step we build a graph connecting each pair of panoramic images
that shares 3D points computed in the MVS registration phase, and
weights each arc connecting two images with the likelihood that
they were taken in the same room. In the second step we run a graph
clustering algorithm based on random walks to obtain a connected
component for each room.

One way of weighting the arcs could be using some image simi-
larity criteria. However, in this setting is very likely that rooms of
the same floor have the same type of furniture and the same type
of color overall. Using a full-image similarity measure, moreover,
would be hampered by the strong occlusions and distortions of in-
door images, leading to possibly too strong differences between
images taken from nearby viewpoints. A more local criterion may
be to use the count of shared 3D features between panoramas. Let
aside that in many cases the indoor scenario may contain few fea-
tures. Even when there are many of them, it easily happens that
panoramas taken nearby a door share a high number of features, no
matter on which side of the door they were taken from. We thus
use the fact that 3D points just to build the initial graph and not
for arc weighting. We have experimentally found that initial graph
construction is very robust to the number of shared features used as
threshold for arc creation. All results presented here use a threshold
of 10 shared features, which is low enough to avoid rejecting good
candidates.

Figure 2: Left: two images of the same room with the horizon stripes
highlighted Right: top) correspondences between the two stripes R1 and R2;
middle) hierarchical scheme for top-down computation of optimal warping;
bottom) the first 5 levels of warping computation. Please note that the actual
number of pixels for each level is B2l . The stripes have been resized to the
same length for the sake of comparison.

The core idea of our method is, instead, that if we take two
panorama images and manage to warp a reasonably, not-occluded
portion of one image onto a matching portion of the other, then it’s
likely that they are images of the same room. In our case, we can,
in particular, leverage the fact that all our panoramic images are
acquired from the same height because it means that any warping
will map pixels between the horizon rows of the two images, that is,
the central horizontal rows (or close to them in case of approximate

equal elevation, see Sec. 4.2). In other words, we are considering
just an horizontal slice of each panorama taken at eye level, that
typically means above chairs, tables and most other clutter. As it
can be seen in Fig. 2.left discontinuities on furniture, corners, doors
and windows are captured along with their topological relationship.

4.1 One-dimensional image warping

Let R1 and R2 be two rows of pixels. We obtain the warped
version of R1, W (R1), by defining the function W : IR→ IR as the
piece-wise linear interpolation of a series of k values W ( i

k+1 ) =
ui,0 ≤ ui ≤ 1, i = 1 . . .k. This warping is easily interpreted and
implemented as the rendering of a texture mapped sequence of k+1
equally sized rectangles covering a row of pixels with the same width
as R1 and having ui, i = 1 . . .k as texture coordinates. We proceed
by iterating an optimization algorithm in a top-down fashion for‘
k = 2l l = 0 . . . l = log2(

n
B ), where n is the length of R1|2 and B is

the number of pixels at the minimal resolution. At each level l, the
down-scaled version of R[1,2] are used, more precisely those with
width equal to B2l , and the error of a warping is computed as the
average distance between the color of corresponding pixels, that
is E[|W (R1)−R2|]. For l = 0 the warping is defined by a single
variable/texture coordinate u0, for l = 1 by 3 variables u0,u1,u2,
and so on. When the error minimization at level l is completed, the
output values of the 2l variables are passed to the next level l +1,
and the remaining 2l+1 are initialized to random values.

4.2 Robust implementation

Although our approach is very straightforward, a robust imple-
mentation requires some more insights. First of all, any meaningful
warping should have a bijective W , which means that variable ui
should be increasing, i.e., ui < ui+1. This is easily achieved by
minimizing over a set of variables ti that defines the ui in a hi-
erarchical way. In other terms u1 = t1, u2 = 0 ∗ (1− t2)+ u1 ∗ t1,
u3 = u1 ∗(1− t2)+1∗ t2 etc. Second, we use one more variable ∆ as
an offset to all the others, that is W∆(

i
k+1 ) = ∆+ui . This is done in

order to more easily represent the rotational component between the
two panoramas. Finally, we do not actually use a one-pixel-thick row
of pixels. In order to account for little height differences between
the shooting point of the panoramas and for small inaccuracies in
vertical registration, we use a thicker row. On the other hand, please
note that only pixels at the horizon are mapped to pixels at the hori-
zon, that is, a linear warping is inaccurate for pixels off the central
row. We found a working compromise by using 4 pixels thick rows.
Please note that, for the sake of illustration, the stripes R1|2 in Fig. 2
are much thicker (160 pixels).

4.3 Graph partitioning

We associate to each arc (i, j) the weight w(i, j) = 1 −
Err(R1,R2) where Err is the error corresponding to the optimal
warping for a given pair. Given the weighted graph, we exploit a
method based on random walks [HK01] to compute a partition of
the images in groups, one group per room. The idea of the random
walk methods is to interpret w(i, j) as the probability that a traveling
agent in i will move to node j. In this setting, letting agents walk in
the graph will make the natural clusters emerge as the arcs internal
to a cluster are traversed more often than the arcs connecting nodes
of different clusters.
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(a) Ob ject model (b) Image masks (c) rgb pro jection (d) Edges pro jection

Figure 3: Foreground segmentation and projection. We model each clutter object as a cuboid lying on the floor plan 3(a). Given objects contours/masks of an
equirectangular image 3(b), we generate, for each z, a representative projection of each mask/object (i.e., hightlighted in green), both for rgb values 3(c) and
edges 3(d).

4.4 Parameter tuning and results

In order to verify that our method efficiently works without any
manual intervention or per-dataset parameter tuning, we ran a series
of tests in all datasets. In the table in Figure 4 the cells report the
overall running times (in seconds) to complete the partitioning at
several combination of stripes thickness T in 4,8,16 (columns) and
the optimization level L in 3,4,5 (rows). The figure also shows the
corresponding partition graph obtained by our algorithm, which is
the same for all cases. This proves that changing the parameters has
only effect on the running time but not in the final outcome, and that
we can safely use the fastest configuration T = 4,L = 3 (top left cell
of the table).
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Figure 4: Panorama partitioning for dataset R2. Each rows shows a ta-
ble of running time while varying thickness of the stripes and depth of
the optimization tree, and the partition graph computed by the algorithm.
Partitioning returns 5 rooms7.

5 Recovery and modeling of clutter

We model each clutter object O(z∗) as a cuboid whose 2D foot-
print is an oriented rectangle F(z∗). The bottom face of the cuboid
lies on the floor plane (i.e, z = zmin) and the top face on the plane
with z = z∗ (Fig. 3(a)). Assuming the floor plane is known, this
cuboid is fully defined by 6 parameters, which are, respectively, 2D
position, 2D size, orientation around z axis of F(z∗), and height z∗.

Object identification is done per room through a geometric rea-
soning process that takes as input both per-image information and
global information. At the image level, we segment the panorama
into layout (background) and object (foreground) with the method
of Yang et al. [YJL∗18], which fuses the results of saliency and
object detection algorithms to recover candidate object positions
also when objects have unusual shapes or are partially visible. As
a result, each panorama image is enriched with the pixel mask of
candidate foreground objects. At the image group level, we exploit

the output of our graph partitioning phase to apply all the reasoning
phases only to images that are very likely taken in the same room,
and therefore seeing (a subset) of the same objects. Multi-view reg-
istration is used to know the relative pose among images, as well as
the position of a set of triangulated 3D features.

The cuboid representation of each model is inferred from all this
information by introducing a virtual plane sweeping approach. We
set the virtual camera (i.e., scene center) at the position of one the
input cameras (i.e., the first one), looking the floorplan from the ceil-
ing to the floor along z direction, also setting this pose as the center
of the floorplan model (Fig. 3(a)). Object parameters are obtained
by solving an optimization process. For this, we define a projective
function (Sec. 5.1), to parameterize on z each image contribution,
and a cost function E(z) 5.2, to jointly evaluate the contribution of
multiple images (Sec. 5.3). It should be noted that the object masks
in individual images (e.g., Fig.3(b)) do not necessary describe a
complete object shape but, as a result of automatic segmentation,
only salient parts of it. Our goal, with the steps described below, is
therefore to exploit different clues from different points of view to
recover a consistent and complete model.

5.1 Parameterization

Let P(x,y,z) be a point in object space and RkTk the reference
frame associated to the equirectangular image k (Fig. 3(b)). The
correspondence between points and image coordinates (u,v) is es-
tablished as follows:

u =
arctan( P′y

P′x
)

2π
∗w

v =
arctan(

√
P′x2+P′y2

P′z
)

π
∗h+ h

2

(1)

where P′ =
[
RkTk

]
P are the local coordinates of the 3D point with

respect to the k reference frame, w and h are respectively width and
height of the image. Through this relationship, given a value of z, we
can transform each image mask of an object into a representation on
the XY plane (Fig. 3(b)) built from the corresponding image pixels.
By matching these representations among several images for a given
value of z, we aim to identify objects and determine their cuboid
representation. Using this approach, object recovery can be cast
as an optimization process of a matching cost function (Sec. 5.2),
which is minimized through an efficient plane sweeping approach
(Sec. 5.3).
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(a) Matching (b) Plane sweep : start (c) Plane sweep : best z value

(d) Below camera (e) Above camera (f) Optimization

Figure 5: Object modeling steps. Fig. 5(a) shows the masks associated to object ob jid . Fig 5(b)shows the masks projection on the floor plane. Violet contour
represents the union of the projections, Cyan contour their intersection, orange contour encloses points with best color consistency. Fig. 5(c) shows the
projections of the masks when varying z, and in particular for the value z∗ that minimizes the cost function. Yellow rectangle represents the recovered shape
F(z∗). Fig. 5(d) shows the cost function trend during plane sweeping for objects lower than the height of the virtual camera (e.g., same object-Bed of previous
illustrations). Fig. 5(e) shows components trend for objects higher than the virtual camera (i.e., Cabinet from Apartment0). Fig. 5(f) illustrates optimization step,
where yellow boundary represents the initial O(z∗) approximation and the green boundary the final fitting on the 3D sparse points.

5.2 Cost function

We assume that at least 1 < m≤ n images contain a contour/mask
of the same targeted object O(F∗,z∗), where n is the number of
images inside a group/room (Sec. 4).

We define the cost function E(z):

E(z) = Es(z)+Ec(z)+Ee(z) (2)

where Es,Ec,Ee denote different cost components, for a certain z,
estimated by transforming and merging the m object masks and
their contents. In particular, in addition to mask shape, the matching
process uses image colors (Fig. 3(c)) as well as binary edge maps in
(Fig. 3(d)) the mask area to determine a matching cost. In the case of
edges, note that we remove vertical lines of the image (i.e., vertical
structures in the world space), because, on the XY projection, they
would only provide noisy information in terms of radial lines not
consistent with the shape of the object (Fig. 3(d), orange edges).

Specifically, Es = 1− IoU (shape component) measures the simi-
larity among masks, and is a value that depends on the intersection
over union ratio of the m projected masks (Fig. 5, cyan contour
(intersection) violet contour (union)).

Ec, instead, measures color consistency, on the assumption that
the same object viewed from different positions has the same color.
To cope with lighting and shading variations, we compute this mea-
sure from the hue, computing standard deviation σi of k points lying

inside the intersection, as Ec =
∑

k
i=0 σi

k σmax
, normalized on a maximum

std value (i.e., σmax = 4).

Ee, the edges component, is meant to measure, instead, the con-
sistence in shape, under the assumption that significant edges are
consistent among views. In order to compute this component, we
first determine the minimum area rectangle enclosing intersection

points with σhue ≤ σmax (enclosing orange contour of Fig. 5(b) and
Fig. 5(c)), which is assumed to be the current 2D footprint F(zc)
for the given zc, so that the resulting 3D cuboid is O(zc). From the
current 2D footprint F(zc) of O(zc), we compute Ee (edges com-
ponent), as the 2D mean squared distance of the projected edges
(Fig.3(d)) from the footprint F(zc), normalized to a max range (i.e.,
50cm).

In other words Es evaluates how much the projected shapes of
the same object coincide and fall on the same portion of space, Ec
evaluates the consistency of the color, while Ee the consistency of
the estimated shape edges with the color gradient. We exploit such
cost function E(z) in the optimization described in Sec.5.3.

5.3 Object recovery through multi-view optimization

At the beginning of the optimization, we determine the potential
objects by analyzing mask overlaps and the behavior of the energy
function. We initialize the system by determining which masks m
are related to the same object ob jid (Fig. 5(a)). We set constant
z = zmin (i.e., z value for the floor with respect to the scene center)
and we compare, in world projected space, each object mask vs.
all the masks in the other images. If one or more intersection exist
(Fig. 5(b)), we assign the same label ob jid on different images
to the intersecting projected masks, choosing, in case of multiple
intersections, the one with the minimum value of E(zmin). As a
result of this initialization we obtain a list of target objects and, for
each one, a list of m image masks related to that object.

Once a matching is established we perform, for each object,
a plane sweeping, in the z direction, searching for the z∗ ∈
[zmin . . .zmax] which minimize E(z), where z = 0 is the height of
the virtual camera. Fig. 5(b) shows the projection of 3 masks for the
initial z value (e.g., z = zmin), while Fig. 5(c) shows the projection
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(a) Segmentation with clutter (b) Fitting no clutter (c) Fitting with clutter

Figure 6: Floorplan modeling. Fig. 6(a) shows an alpha comparison between background labeling without considering clutter 3D models (blue (ceiling),
red (floor) and green (wall)) and the labeling with projected clutter (yellow). Under the yellow labelled part is visible a glimpse of the segmentation without
clutter [CF14] . Fig. 6(b) shows the room shape fitting without considering clutter. The initial shape estimated on ceiling-floor facets (dashed line) is shaped
indistinctly on both anchor points of the wall and of the clutter. Grey dots instead represent points seen through a door but actually belonging to another room.
Such points are filtered through the grouping information. Fig. 6(c) shows instead the fitting considering clutter information, which results in a more accurate
reconstruction.

in the proximity of the minimum of E(z) (i.e., Bed from Apartment0
dataset, see results 7). Figures 5(d) and 5(e) illustrate the trend of
E components during plane sweeping. Fig. 5(d) shows the typical
trend for objects below the virtual camera, i.e. objects whose upper
part is visible from the camera. In this case the main contribution to
the finding of minimum is given almost exclusively by shape and
color components. Since objects under the camera can be identified
a priori by the position of their masks in the images (e.g., all masks
below the horizon), plane sweep is stopped in advance for z = 0.

Fig. 5(e), instead, shows the components trend for objects higher
than the model center (i.e., Cabinet from Apartment0). Unlike the
previous case, the components of shape and color are not very
influential for the estimation of the height of the object, as the upper
surface of it is not visible. Instead, the identification of the edges
becomes discriminating, as evidenced by the trend in the graph.

As a result of plane sweeping we obtain a first approximation of
the object O(z∗) varying only z.

We exploit O(z∗) to refine the model by varying all the 6 pa-
rameters (F̄ ,z), varying them independently but constrained around
O(z∗) (Fig. 5(f), yellow shape. Numerical details at Sec.7). we
formalize the optimization problem as (Eq. 3):

O∗(F̄ ,z)≡ arg min
F̄ ,z

[Ec(F̄ ,z)+Ee(F̄ ,z)+E f (F̄ ,z)] (3)

which can be solved with Levenberg-Marquardt iterations.

Differently by cost function in eq.2, in this case we do not com-
pute Es (e.g., footprint is already defined by F̄ , as well as Ec and Ee
are computed directly on the candidate footprint F̄ . Additionally we
introduce the E f component, which is the mean squared distance of
the 3D features (recovered from the multi-view registration) from
the cuboid faces (Fig. 5(f), green shape). We iterate object recovery
for each object and for each room until we populate the scene with
all the 3D clutter models. We then exploit 3D clutter data to com-
plete and enhance the reconstruction of the whole floor plan with
room walls and ceilings (Sec. 6).

6 Recovery and modeling of the structural 3D floor plan

To recover walls, ceiling, and floor, we combine and extend state-
of-the-art approaches for large and complex indoor scenes, exploit-
ing the results from graph partitioning and clutter modeling.

As discussed in Sec. 2, current methods generally exploit a sim-
plified image segmentation into ceiling, floor and wall super-pixels
(e.g., [CF14, PGP∗18]), where basically room shape is defined in
2D by the ceiling/floor super-pixels footprint, enforced by the wall
super-pixels as 2D anchor points. This simplified classification, in
absence of other information, is prone to substantial errors, both in
terms of labeling accuracy (Fig. 6(a)), and, above all, in positioning
the anchor points (Fig. 6(b)).

In our work, instead, we exploit image grouping (Sec. 4) and
recovered clutter models (Sec. 5) to enhance images segmentation
and labeling. The goal is to use the extra information to more accu-
rately estimate anchor points and to provide additional constraints
for the optimization and recovery of room geometry. In this work,
this is done by extending the open source pipeline of Pintore et
al. [PGP∗18], which works with sparse panoramic imagery.

We summarize the boundaries extraction pipeline in the pseudo-
code 1, highlighting (in bold) our specific contributions with respect
to the original approach [PGP∗18]. Starting from the super-pixels
segmentation of the original images (createSP), we project-back the
recovered 3D clutter models on the segmented images (Fig. 6(a)),
labeling as clutter super-pixels where the projection fall (label-
ClutterSP, and assigning to them the depth of the projected model
(clutterDepth). Only for the remaining super-pixels, we perform
background labeling (e.g., ceiling, floor, wall) and 3D features in-
filling, as described by [PGP∗18], ( labelBackgroundSP and infill-
BackgroundSP).

Using the the panorama-set partitioning algorithm introduced
in Sec. 4, we assign each cluster of images to a different room.
Then, for each room, we transform labeled super-pixels to 3D facets
(ceiling and floor) and 2D anchor points (wall and clutter) (Fig. 6(c).
See Pintore et al. [PGP∗18] for details). Using this projection, we
estimate for each room, according to the original pipeline, a first
2D shape (shape2D) from ceiling and floor facets ( estimateShape).
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Figure 7: Recovered models vs. ground truth. We illustrate, for each dataset, the recovered floorplan models compared vs. ground truth and other ap-
proach [PGP∗18]. The footprint of recovered objects is illustrated with orange rectangles over the 2D ground truth (e.g., gray background), rooms boundaries
reconstructed by our method are showed with green line and rooms boundaries recovered by the other method by dotted green lines. Below the comparison we
show 3D views of the recovered models.

Algorithm 1 Rooms boundaries extraction

1: Ieq equirectangular registered images
2: F3D multi-view features
3: C3D clutter models
4: for all img ∈ Ieq do
5: imgSP← createSP(img)
6: maskedSP← labelClutterSP(imgSP,C3D)
7: labeledSP← clutterDepth(maskedSP,C3D)
8: labelBackgroundSP(labeledSP)
9: labeledSP← in f illBackgroundSP(labeledSP,F3D)

10: S3D 3D room shapes (empty, to be computed)
11: Rooms← groupImages(Ieq)
12: for all r ∈ Rooms do
13: Ff loor,Fceiling floor and ceiling 3D facets
14: Awall wall 2D anchor points
15: Aclutter clutter 2D anchor points
16: Ff loor,Fceiling← trans f ormToFacets(labeledSP)
17: Awall ,Aclutter← trans f ormToPoints(labeledSP)
18: filterWallPoints(Awall ,Rooms)
19: shape2D← computeShape(Ff loor,Fceiling)
20: refineShape(shape2D,Awall ,Aclutter)
21: shape3D← make3D(Ff loor,Fceiling)
22: S3D← shape3D
23: buildFloorplan(S3D,C3D)

Since the clutter has been explicitly removed, the estimation is
much improved in this phase with respect to Pintore et al. [PGP∗18],
as demonstrated in Sec. 7. We further improve over the original
approach ( refineShape), by pruning wall anchor points using the
visibility graph information 4 and by integrating the clutter anchor
points (Fig. 6(c)) in the shape optimization.

Specifically, we filter-out wall anchor points Awall ( filterWall-

Points) that are seen at the same time by cameras of different vis-
ibility groups/rooms (e.g., a typical example of this situation are
the points seen through an open door). It should be noted that in
our method wall points no longer contain parts of the clutter. Then,
we optimize the 2D polygon ( refineShape) representing the room
footprint shape2D to not only minimize its distance from wall
points Awall , but also imposing that all the anchor points Aclutter
are contained inside the polygon:

R2k ≡

argmin
R̄

[dist(Awall ,shape2D)]

shape2D 3 Aclutter

(4)

where each shape2D hypothesis is generated by varying a vector
of 2k corners R̄(x0,y0, · · · ,xk,yk) [PGP∗18], and imposing for each
step that Aclutter points must be contained inside the candidate shape.
Once the 2D walls arrangement is optimized, we extrude the 3D
room using floor and ceiling 3D information ( make3D).

Finally, we join in the same 3D representation the 3D clutter
C3D and all the 3D boundaries S3D ( buildFloorplan). The parti-
tioning data is then used to complete the model with the passages
between rooms (i.e., weak arcs on the camera trajectory4), deter-
mining whether they are doors or open passages.

7 Results

Our reconstruction pipeline is implemented in C++ on top of
OpenCV. For multiview alignment we use Photoscan http://
www.agisoft.com/). The system, starting from a collection
of spherical images and their multi-view alignment, automatically
produces a structured 3D floor plan in terms of interconnected rooms
bounded by floor, walls and ceilings, and including the bounding
volumes of clutter objects.
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Scene Clutter error Imgs per room Imgs assignement Room 3D IoU
Name Objects mq. 2D Pos. Orient. Area Height[cm] Our [PGP∗18] Our [PGP∗18] Our [PGP∗18] [YZ16]
Real-data R1 35/36 96 2±5 cm 0.2±1.8 deg 2±26 % 2±15 cm 2.5 2.6 97 % 76 % 89 % 83 % 75 %
Real-data R2 19/20 78 3±21 cm 0.7±2.3 deg 2±18 % 1±8 cm 3 4 100 % 99 % 90 % 82 % 74 %
Real-data R4 43/44 196 2±8 cm 0.4±2.1 deg 3±1 % 3±2 cm 3 6 91 % 72 % 88 % 74 % 70 %
Real-data R5 10/10 55 4±11 cm 0.5±1.0 deg 2±8 % 2±3 cm 2.5 5 100 % 70 % 91 % 84 % 61 %
Synthetic data S1 20/21 188 4±16 cm 0.1±1.0 deg 3±32 % 1±5 cm 2.5 4 100 % 86 % 90 % 72 % 49 %

Table 1: Floorplan performance. We present a summary of performances on large, representative floorplans, detailing clutter and rooms structure reconstruction
errors. For each dataset we show the ratio of objects recovered, the scene area, the average and maximum error on recovered objects with respect to ground truth.
Besides we present the average number of images needed per room, the percentage of correct images assignment and the resulting 3D intersection-over-union
ratio (i.e., average of all rooms) with ground truth, compared to the pipeline of Pintore et al. [PGP∗18] and, for completeness with the average results of Yang
et al. [YZ16] (i.e, averaging score only for rooms where such single-view approach works).

Figure 8: Model rendering example. 3D rendering of reconstructed R2
dataset with colors from textures.

Our [XSKT17]
Pos. Err. Orient. Err. Pos. Err. Orient. Err.

Bed 2±4 cm 0.0±1.5 deg 25±17 cm 1.0±1.4 deg
Chair 1±2cm 0.5±1.5 deg 52±66 cm 10.7±15 deg
Plant 2±6cm − 9±12 cm −
Overall 3±21cm 1.0±3.0 deg 28±32 cm 4.3±5.7 deg

Table 2: Object reconstruction comparison. We summarize clutter results
for all datasets, detailing performances for some categories, also exposed
by the method of Xu et al. [XSKT17]. Our method presents better results in
all categories, also taking into account that our results are calculated on a
wider variety of rooms. In our approach we also expose orientation error for
plants, since, from the space occupation point-of-view, there are a direction
of major extension of the canopy (i.e., Fig. 9). .

7.1 Real and synthetic datasets
We tested the system on a variety of real-world and synthetic

scenes, covering over 130 clutter objects of different typologies
(bed, cabinet, desk, chair, plant, lamp, lavatory, etc.), belonging to
large multi-room environments. To simplify comparisons, we ex-
ploited publicly available multi-view data (http://vic.crs4.
it/download/datasets/), of which measures of rooms and
clutter are available. Ground truth objects from real data have been
manually modeled, from real laser measures, through representative
CAD models having exactly the same size, orientation and position
of real clutter, so that they have the same bounding volume of real
objects.

In addition, we exploited synthetic datasets to precisely evaluate
the system with respect to precise ground-truth data. Specifically,
we modeled synthetic scenes by rendering photorealistic equirect-
angular images of 3D models from another public repository of
large indoor scenes (https://www.ifi.uzh.ch/en/vmml/
research/datasets.html). We have enriched those models
with additional clutter and photorealistic details.

For both real and synthetic data, our ground truth model is a
metrically scaled (cm) structured 3D floorplan, with floor, ceiling,
walls, and major clutter objects inside (i.e., lying on the floor or
attached to wall at low heights).

7.2 Reconstruction performance

We run our tests on a PC with Intel Core i7-4770 (3.40GHz) pro-
cessor and 32GB RAM. Foreground segmentation [YJL∗18] takes
about 4 seconds for each image, meanwhile multi-view registration
takes about 2 minutes for a dataset of 24 images using Photoscan.
Object partitioning takes about 10 seconds for the same dataset of
24 images. Object inference takes about 8 seconds for each object,
as well as boundaries estimation 12 seconds per room.

7.3 Quantitative evaluation

In Tab. 1, we present quantitative performance in terms of 3D
layout recovered, compared to ground truth and with the method of
Pintore et al. [PGP∗18] and Yang et al. [YZ16] for the boundaries
extraction.

We show, for each floor plan, the number of objects actually
reconstructed over the number of target objects. We assume as target
objects the segmented clutter that is visible from at least two images.
The unreconstructed objects are therefore cases of failure case of
our method, independently by the segmentation performance, which
is external to our methods [YJL∗18]. Tests demonstrate that our
method can fail if object masks do not contain enough geometric
cues, as showed,for example, in Fig. 10.

Clutter error shows the average and maximum error on recovered
objects with respect to ground truth. We measure positional error
(2D Pos. cm) as distance between object centroids on the 2D ground
plane, orientation error (Orient. deg) as the angle between ground
truth cuboid and its estimated pose, area error (Area percentage
%), with respect to ground truth object footprint, and the object
height error (Height cm). we intentionally separated for the objects
the various components (position, area, height), instead of using,
for example, intersection-over-union, to facilitate comparison with
other clutter modeling methods (Tab. 2).

Our clutter modeling method presents very low average position,
orientation and area error in all tests, where the major deviations, es-
pecially in term of dimensions, are due mostly to specific cases (e.g.,
plants, pillows on a bed, TV on a cabinet, etc.) of not well defined
shapes. Further details and comparisons on clutter performances are
exposed in Tab. 2, Fig.7 and Fig.9.
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Imgs per room and Imgs assignement show a numerical com-
parison of our clustering method with a generic geometric ap-
proach [PGP∗18], which is the most similar to ours, in terms of
input data and constraints (see Sec.2). We show how our visual
approach allows the entire pipeline to work with a smaller number
of images per room, and how, instead, the other approach needs
some more images because it discards the images that it is not able
to geometrically assign. Moreover our method achieve a better ac-
curacy in the assignment of images (i.e., average compared to all
rooms), in particular in the case of semi-open spaces without doors
(e.g., Real-data R4 and R5 ).

Room 3D IoU shows instead the 3D intersection-over-union
ratio (i.e., average of all room) with ground truth, compared to
the pipeline of Pintore et al. [PGP∗18], and, for completeness,
with the pipeline Yang et al. [YZ16] ( https://github.com/
YANG-H/Panoramix). Yang et al. approach [YZ16], although
single-view and limited to simple rooms visible from a single
point of view, still offers a term of comparison with these types
of approach, since even more recent single view geometric ap-
proaches [YJL∗18] are based on the same methodology of seg-
mentation and background reconstruction.

In all cases, our approach outperforms the other system, mostly
due to the exploitation of image grouping and clutter data fusion in
room structure and shape recovery. For the sake of clarity recent data-
driven single view methods for room extraction [YWP∗19], even
if not directly comparable, achieve average 3D IoU performance
of about 77% (imposing Manhattan World constraint). Fig. 7 illus-
trates floorplan results, showing the footprint of recovered objects
(e.g., orange rectangles) over 2D floorplan (e.g., gray background),
rooms boundaries reconstructed by our method (e.g., green line)
and rooms boundaries recovered by other method [PGP∗18] (e.g.,
dotted green). In Tab. 2 we summarize clutter results for all datasets,

Our [BFFFS14] [CF14]
Completeness 100% 91% 100%
Accuracy 91% 80% 68%

Table 3: Completeness and accuracy comparison. Comparison with other
multi-view approaches [BFFFS14,CF14] in terms of the percentage of image
pixels whose 3D information can be estimated (Completeness), and in terms
of percentage of correctly labeled pixels (Accuracy).

detailing performances for some categories, to compare them with
the performances of Xu et al. [XSKT17]. Such method for single
indoor panoramic images, extends Zhang et al. approach [ZSTX14]
to clutter modelling, exposing numerical results comparable with
ours (e.g., no numerical results related to the room layout have been
made available instead). Our method presents better results in all
categories, also taking into account that our results are calculated
on a wider variety of rooms, obviously taking advantage of working
on more than one view of the same object. In our approach we also
expose orientation error for plants, since, from the space occupation
point-of-view, there are a direction of major extension of the canopy
(i.e., Fig. 9).

In Tab. 3 we show a summary of our performance in terms of the
percentage of image pixels whose 3D information can be estimated
(Completeness), and in terms of percentage of correctly labeled
pixels (Accuracy). To allow comparison, these values are calculated,
by means of synthetic datasets ground truth, on the labeling of in-

(a) Ground truth (b) Our (c) [CF14]

(d) D2 : Coat hanger (e) D5 : Round table (f) D5 : Plant

Figure 9: Re-projection of recovered models and image labeling. On the
first row we present a comparison, on the same example image of Dataset5,
between ground truth 9(a), our method 9(b) and the semi-dense approach of
Cabral et al. 9(c). On the second row we show some example of particular
object reconstructed by our method. As the hanger 9(d) and the rounded
table 9(e) are correctly represented with their boundaries, approximation of
the plant leads to a 2D size error on venge 9(f), although the real footprint
size (i.e., plant pot) is correct.

dividual pixels and not of representative cuboids (Fig. 9(a)). We
compare our results with two different multi-view approaches, Bao
et al. [BFFFS14] and Cabral and Furukawa [CF14]. As discussed
in Sec. 2, Bao et al. [BFFFS14] reconstruct small cluttered indoor
scenes (e.g, a room portion), from a set of about 10 pin-hole images.
Even if it can be considered, for the number of images required,
an almost dense approach, their paper provides numerical results
comparable to ours (e.g., code and data are instead not available). It
should be note that such method [BFFFS14] recovers only 86% of
the objects inside the room, since they cannot recover surfaces that
do not contain SFM points. Indeed such value is included in the over-
all accuracy used for the comparison. Cabral et al. [CF14], instead,
adopted equirectangular images to improve indoor reconstruction
provided by a dense multi-view pipeline [FCSS09]. Although their
full approach is not directly applicable on our sparse data, their
super-pixels structure classification can be used as a benchmark, as
it provides a complete classification of each individual equirectan-
gular image 9(c) (i.e., source code and data not available, approach
implemented according to paper description).

Results show that our method guarantees a reconstruction of the
scene even in the parts without 3D points, and an accuracy higher
than compared approaches even if using a limited number of images
(Fig.9(b)).

Fig. 10 shows instead examples of failure cases. As described
in the previous sections, our method needs at least two segmented
views of the object to be reconstructed, which must somehow con-
tain consistent clues of shape and color. Fig. 10(a) shows two image
masks of the same object (i.e., a refrigerator), but, due of identical
adjacent structures and low saliency in the right view, the masks
contain contrasting clues. Since, geometrically, they have a common
surface that projects into the same portion of 2D plane (see Sec.5.3),
these masks are wrongly matched. In this case, our algorithm is not
able to converge to the right solution. Fig. 10(b) shows a case of
occlusion affecting the object footprint. Also in this case objects
have been recognized and matched, but the first view (e.g., left im-
age) does not contain information about object footprint. we have
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(a) Mask ambiguity (b) Occlusion

Figure 10: Example of failure cases. Fig. 10(a) shows two masks of the
same object but with contrasting clues. Fig. 10(b) shows instead two masks
correctly recognized but with a fatal occlusion in the right one.

experienced that these cases depend mainly on the position of the
image and not on the scene. In particular, images taken too far away
from the object or from a not optimal pose are more subject to errors,
especially for masks matching.

8 Conclusion

We have presented a light-weight approach to capture and au-
tomatically reconstruct structured 3D models of cluttered multi-
room floor plans. The method starts from a small set of overlapping
panoramic images, which can be very rapidly captured with com-
modity devices and, as show by our results, is capable to generate
automatically a 3D layout of the rooms and of all major objects
inside. Such a 3D layout is directly suitable for use in a number
of real-world applications, such as guidance, location, routing, or
content creation for security.

Our main advantages are in providing a full pipeline that exploits
an automatic partitioning into rooms and seamlessly merges clutter
detection and room shape reconstruction to quickly produce, in a
fully As demonstrated by our results, for similar environments, our
approach, in addition to providing shape and location of 3D interior
objects, also increases the precision in the recovery of the wall
structures with respect to competing methods working on sparse
panoramic images.

In our future work, we plan to exploit the reconstructed semantic
models for simulation and visualization in the security areas, and
to further enrich it with semantic information attached to objects,
also going towards automatic 3D modeling by replacing the cuboid
approximation with fully 3D models using a data-drive approach.
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