
QuadMixer: Layout Preserving Blending of Quadrilateral Meshes

STEFANO NUVOLI, University of Cagliari, Italy
ALEX HERNANDEZ, Federal University of Rio de Janeiro, Brazil
CLAUDIO ESPERANÇA, Federal University of Rio de Janeiro, Brazil
RICCARDO SCATENI, University of Cagliari, Italy
PAOLO CIGNONI, CNR of Italy, Italy
NICO PIETRONI, University of Technology Sydney, Australia

Fig. 1. With the proposed blending technique we can assemble pieces of different animals respecting the original quad meshing. In less than ten minutes we
detached and combined these body pieces to automatically obtain the pure quad mesh shown on the right.

We propose QuadMixer, a novel interactive technique to compose quad
mesh components preserving the majority of the original layouts. Quad
Layout is a crucial property for many applications since it conveys important
information that would otherwise be destroyed by techniques that aim only
at preserving shape.

Our technique keeps untouched all the quads in the patches which are not
involved in the blending. We first perform robust boolean operations on the
corresponding triangle meshes. Then we use this result to identify and build
new surface patches for small regions neighboring the intersection curves.
These blending patches are carefully quadrangulated respecting boundary
constraints and stitched back to the untouched parts of the original models.
The resulting mesh preserves the designed edge flow that, by construction, is
captured and incorporated to the new quads as much as possible. We present

Authors’ addresses: Stefano Nuvoli, Dept. of Mathematics and Computer Science,
University of Cagliari, Cagliari, Italy, s.nuvoli@studenti.unica.it; Alex Hernandez, Fed-
eral University of Rio de Janeiro, Rio de Janeiro, Brazil, ahernandezm@cos.ufrj.br;
Claudio Esperança, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,
esperanc@cos.ufrj.br; Riccardo Scateni, Dept. of Mathematics and Computer Science,
University of Cagliari, Cagliari, Italy, riccardo@unica.it; Paolo Cignoni, CNR of Italy,
Pisa, Italy, paolo.cignoni@isti.cnr.it; Nico Pietroni, University of Technology Sydney,
Sydney, Australia, nico.pietroni@uts.edu.au.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2019 Association for Computing Machinery.
XXXX-XXXX/2019/12-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

our technique in an interactive tool to show its usability and robustness.

CCS Concepts: • Computing methodologies→ Mesh models.

Additional Key Words and Phrases: Mesh Modelling, Quadrangulation, Re-
topology

ACM Reference Format:
Stefano Nuvoli, Alex Hernandez, Claudio Esperança, Riccardo Scateni, Paolo
Cignoni, and Nico Pietroni. 2019. QuadMixer: Layout Preserving Blending
of Quadrilateral Meshes. 1, 1 (December 2019), 13 pages. https://doi.org/10.
1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The generation of high-quality 3D assets is a significant part of
the production pipeline in the entertainment industry. Modeling
complex shapes from scratch requires highly skilled artists with
extensive professional training at a considerable cost. Moreover,
these efforts are, inmany cases, not exploitablemultiple times.While
for architectural and mechanical shapes, the high standardization of
the basic elements allows the reuse of components, the creation of
organic models with less structured shape often starts from scratch.

Various combining techniques since [Funkhouser et al. 2004] have
been proposed to overcome this problem. Such approaches are quite
intuitive and suitable for novice users. Their primary purpose is
to directly combine parts from existing models to synthesize new
models by allowing rapid assembling of complex 3D models from
arbitrary input meshes.

, Vol. 1, No. 1, Article . Publication date: December 2019.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 • Nuvoli, Hernandez, Esperança, Scateni, Cignoni, and Pietroni

This process of shape composition has recently gained much in-
terest. These methods allow for cutting arbitrary surface parts from
one model and automatically stitching them to existing holes into
another [Schmidt and Singh 2010; Sharf et al. 2006]. Detail transfer
techniques are used to copy high-frequency details [Biermann et al.
2002].

Recently, many efforts have concentrated on the other important
task of suggesting or choosing what parts to combine. Modern tech-
niques provide fully automated frameworks to indicate the widest
choice of possible results. However, while this field of modeling-by-
composition is quite active and it is generating promising results,
all the proposed solutions cannot produce a fully quadrangulated
mesh. Their output is always limited to triangulated surfaces.
In the industry, coarse quad layouts are often manually created

by professional designers. They employ their semantic knowledge
and experience to adjust the layout in the context of the particular
application needs. Typical modeling systems used in the industry
[Autodesk 2018; Pilgway 2017; Pixologic 1999] allows the user to
draw vertices and edges on a surface manually. Since this manual
procedure is time-consuming and error-prone, a series of sketch-
based retopology approaches [Campen and Kobbelt 2014; Marcias
et al. 2015; Takayama et al. 2014] have been proposed. These semi-
automatic approaches automate a large part of the process while
allowing the user to efficiently modify the topology of the layouts
without having to start from scratch.

While automatic quadrangulation techniques can generate excel-
lent results, the manual design of the quad flow over the meshes is
still considered by content creators as part of the artistic process.
For this reason, the preservation of the original quad meshes dur-
ing the composition process is crucial to allow the effective use of
modeling-by-composition in the field of quad meshes.
QuadMixer is a novel technique to compose quad meshes. Our

modeling principles take inspiration from the classical boolean op-
erations defined on triangle meshes, but with operators redesigned
to work on quadrilateral meshes. QuadMixer mimics all the con-
ventional boolean operations that are available for triangle meshes
such as union, intersection, and difference. While it is generally a
challenging task to define stable boolean operations, their result
can be defined precisely in the context of triangle meshes [Zhou
et al. 2016]. In contrast, this is not true for generic quad meshes.
Concerning boolean operations, a first evident difference between a
quad mesh and a triangle mesh is that the former does not admit
a unique piecewise discretization. Hence, the single intersection
between two quadrilateral elements cannot be unequivocally de-
fined. In this light, we might refer to our operations as blending
to distinguish them from classical boolean operations on triangle
meshes.

We summarize the main contributions of this paper as follows:

• We propose a new technique to mimic boolean operations on
quad meshes. Our system blends quad meshes preserving, as
much as possible, the original quadrangulation.

• We define a new technique to robustly define a region of
interface/blending between two intersecting surfaces whose
boundary can be quadrangulated.

• We defined a strategy to ensure that the intersection between
two quadrangulated models admits a valid quadrangulation.

• We integrated our technique in an interactive tool and demon-
strated its practical use on modeling scenarios.

2 RELATED WORK
Robustly generating functional quad layouts and quad meshes is
a well-studied research field. Extensive surveys on this topic are
available [Bommes et al. 2013; Campen 2017a] as well as shorter
and more introductory papers [Campen 2017b]. In the following, we
will concentrate the discussion on the most closely related topics:
the user-assisted generation of quad meshes and the meshing of
polygonal patches.

Interactive Quadrangulation Tools. Many methods have been pro-
posed to automatically design coarse quad layouts [Bommes et al.
2011, 2013; Campen et al. 2012; Tarini et al. 2011]. Most of these try
to cope with specific needs in the production. For instance, [Marcias
et al. 2013; Zhou et al. 2018] considers the deformation affecting
a mesh during an animated sequence to generate a quad layout
that remains good for all animation frames. While these automatic
approaches are successful on several quantitative metrics (like sin-
gularity placement and coarseness), in production pipelines there is
the need for a more art-controlled quad generation process. Due to
the global nature of the problem, small changes in the user-provided
initial constraints may completely alter the generated quad mesh.
The combination of this global behavior with the non-interactive na-
ture of these automatic approaches makes the tuning of parameters
an unintuitive and time-consuming task.

Therefore, many approaches have considered the issue of helping
this manual quadrangulation process leaving most of the control to
the final user. Bessmeltsev et al. [Bessmeltsev et al. 2012] developed
a technique for generating quad-dominant meshes starting from an
input 3D curve network sketched by the user; with this approach,
geometry and topology are defined based on regions identified by
closed 3D paths.
Inspired quadrangulation [Tierny et al. 2011] can also be con-

sidered related to our approach. In this work, the authors transfer
quadrangulations between surfaces on a per-partition basis (e.g.,
head, arm, torso) via cross-parameterization. Unfortunately, this ap-
proach does not provide precise local control over the mesh layout.
Instead, our method enables the direct combination of portions of
quad meshes.
Finally, connectivity editing operations have been developed to

enable users to modify existing quad meshes by moving pairs of
irregular vertices [Peng et al. 2011]. These methods provide lower-
level local operators, and they can be integrated with practices of
the previous class to fine-tune the mesh topology.

Quad-Meshing Patches. In our pipeline, we face the issue of com-
pleting a partial quad mesh. This task is an essential part of all
sketch-based retopology techniques [Peng et al. 2014; Takayama
et al. 2013, 2014]. In these semi-automatic approaches, a patch lay-
out is first interactively sketched over the input surface. Then each
patch side is subdivided into many edges as prescribed by the user

, Vol. 1, No. 1, Article . Publication date: December 2019.

QuadMixer: Layout Preserving Blending of Quadrilateral Meshes • 3

[Nasri et al. 2009; Schaefer et al. 2004; Yasseen et al. 2013] and fi-
nally automatically quadrangulated. The present work also requires
quadrangulating patches defined by their sides, which can be done
using filling patterns generated procedurally as in [Peng et al. 2014].
In [Takayama et al. 2013, 2014], a set of manually designed patterns
are expanded to tessellate arbitrary polygons with up to 6 sides.
More recently Marcias et al.[Marcias et al. 2015] proposed another
approach for filling with quad patches a 2D n−sided patch by using
a pattern-based algorithm that uses a trained database of quad-
rangular patches. As explained in Section 2, we expect to produce
triangular patches that are relatively small with respect to the input
meshes, and we propose using Takayama’s method [Takayama et al.
2014]. While Marcias’ method is generally better for controlling
the edge flow, in our case, the edge flow is given by exploiting the
existing field around the boundary of the patches.

Boolean and Composing Operations. As explained in the intro-
duction, our approach leverages on the works on the modeling-by-
composition paradigm [Schmidt and Singh 2010; Sharf et al. 2006;
Zhang et al. 2010]. One fundamental step of these approaches is
the detection and computation of the intersection between surfaces.
A vast literature exists on how to solve this problem robustly and
efficiently, and we exploited the results of [Jacobson et al. 2013a]
for triangulated meshes. Moreover, the idea of trying to limit the
modification on a mesh when performing boolean operations [Pavic
et al. 2010], or repair the result [Bischoff and Kobbelt 2005], has been
already explored. The approach of [Campen and Kobbelt 2010] can
also perform boolean operations on generic input polygonal meshes.
However, no solutions can smoothly composite quad meshes as
the proposed approach. Given a pair of two-manifold watertight
meshes composed only of quadrilateral elements, our method blends
them into a new, closed, two-manifold, pure quadrilateral mesh.
As opposed to triangle meshes, performing blending on quadri-

lateral meshes poses extra challenges: while splitting triangles on a
local basis will always result in a valid triangle mesh, quad meshes
must be manipulated taking into account their entire connectivity.
Indeed, the majority of applications, such as subdivision surfaces or
finite element analysis, require the flow of the edges to be aligned
with geometric features, imposing several conditions on the global
structure and the placement of irregular vertices. Relying solely on
local modifications [Tarini et al. 2010] cannot, in general, enforce
such global characteristics.
A simple way to tackle this problem might be to transform the

quad mesh into triangles first, perform the boolean operation, and
finally use a quad-meshing algorithm based on global parametriza-
tion [Bommes et al. 2009; Jakob et al. 2015] or cross-field tracing
[Myles et al. 2014; Pietroni et al. 2016] to obtain a sound quadri-
lateral mesh. However, this approach will inevitably modify the
entire mesh. This result is far from ideal from a modeling point of
view, as an artist would more likely prefer to preserve as much as
possible the connectivity he has designed. As illustrated in Figure 2,
a complete quadrilateral re-meshing using the approach of [Jakob
et al. 2015] on the result of the boolean operation will inevitably
cause the loss of most of the features designed by the artist, like the
eyes of the pig or the armadillo.

Setup

Instant Meshes

QuadMixer

Fig. 2. Current solutions [Jakob et al. 2015] require to re-mesh entirely
the results of the boolean operation and original connectivity is lost. Our
system efficiently preserves the connectivity and is capable of blending two
different connectivities

Setup MeshFusion QuadMixer

Fig. 3. A comparison ofQuadMixer andMeshFusion ([Visionmongers 2018]):
the difference in the intersection portion of the mesh is noticeable.

Among commercial software packages, to the best of our knowl-
edge, only the Modo suite [Visionmongers 2018] provides a tool,
called MeshFusion, that can combine quad-based mesh represen-
tations with boolean operations while partially preserving their
structure. Here, the user authors a tree of boolean operations with
coarse quad meshes as the leaves; during editing, the system silently
computes and displays a low-level representation, consisting of
a quad-dominant mesh, obtained by subdividing the coarse quad
representations, and performing the boolean operation over the sub-
divided results (considered as triangular meshes in the intersections).
Therefore, differently from our case, a quad-pure representation of
the result is never explicitly computed, and the results include tri-
angulated regions around the intersection lines. Figure 3 shows a
comparison between the quad-dominant representation obtained
by MeshFusion and the result of our method.
A fundamental task is to preserve as much as possible the con-

nectivity of the original quadrangulated models and change the

, Vol. 1, No. 1, Article . Publication date: December 2019.

4 • Nuvoli, Hernandez, Esperança, Scateni, Cignoni, and Pietroni

(a) (b)

(c) (d)

(e) (f)

Fig. 4. An overview of our processing pipeline: (a) Given two separate quadri-
lateral meshes we compute an initial patch layout for each; (b) then quads
are split to form triangular meshes, which are then combined. (c) We update
the patch layout for the patches that are affected by the boolean operation.
(d) We split the triangulated portion of the surface into sub patches. (e)
We derive the optimal subdivision for each side. (f) We perform the final
quadrangulation.

elements only in regions modified by the boolean operation. Figure
4 shows an overview of our entire pipeline.

• We first compute a patch decomposition of the quadrilateral
meshes by using a simple motorcycle graph [Eppstein et al.
2008] tracing algorithm (see Figure 4.a) or solely emanating
separatrices from irregular vertices.

• We split each quad into two triangles, and we perform the
boolean operation using the implementation of [Zhou et al.
2016] (see Figure 4.b).

• We select the patches that have not been modified by the
boolean operation. We retract the sides of the patches that are
partially affected by the boolean operations. Those patches
are the ones that contain only a subset of the original set of
quads (see Figure 4.c). At this stage the mesh can be divided
into two sets: a quadrilateral mesh Q0 and a triangle mesh T

(see Figure 4.c) which share a common boundary.
• We smooth these internal patches to generate a fair geometry
surface, more straightforward to be nicely quadrangulated.
The user can control the amount of introduced smoothing.

• We trace a set of internal patches P on the triangulated mesh

Fig. 5. On the left: the input quad layout; in the center: the patch layout
with separatrices; on the right: the patch layout typical of motorcycle graph.

T (see Figure 4.d). This step uses the definition of a cross-
field [Diamanti et al. 2014] and applying a tracing algorithm
[Campen et al. 2012].

• We solve an Integer Quadratic Program with linear con-
straints to derive the optimal subdivision for each side of
the patches P. The energy formulation balances regularity
of the patches (to avoid inserting unnecessary irregular ver-
tices) with the global uniformity of edge sizes (see Figure 4.e).
The number of subdivisions along the border sides of P are
constrained to match the corresponding subdivisions on Q0.

• We quadrangulate each patch using the data-driven approach
proposed in [Takayama et al. 2014] (see Figure 4.f) obtaining
a new quadrangulated mesh Q1. The union of Q1 and Q0

provides the final result.

3 OUR METHOD
The input to our method consists of pure quadrilateral meshes. They
can be the result of automatic methods or, more usually, models
produced by a digital artist. The first step of our pipeline extracts a
quad patch layout. This step is not difficult and consists of tracing
all the separatrices stemming from irregular vertices (see Figure 5).
Each separatrix is defined as a sequence of edges starting at a singu-
lar vertex (i.e., a vertex of valence different from four) and ending at
another singular one. When applied to manually-modeled meshes,
this process typically produces well-structured and compact patch
decompositions, since the tools used by the artists tend to align the
singularities naturally. As an alternative, we can contemporanily
propagate all the separatrices and stop tracing each separatrix as
soon as it crosses another one. Literature usually describes this pro-
cedure as tracingmotorcycle graphs [Eppstein et al. 2008]. While this
tends to create fewer patches, it can easily introduce t-junctions in
the patch layout. We do not need to make any particular assumption
on the structure or the alignment of the separatrices. Hence, both
approaches are valid as they produce quadrilateral patches. Any
algorithm capable of improving the regularity of the patch layout
(such as [Bommes et al. 2011; Tarini et al. 2011]) is not useful in this
context since it might modify the original edge flow designed by
the artist.

3.1 Optimal Patch Retraction
Given two pure quadrilateral meshes QA and QB , along with their
original quad patch layouts (Figure 6.a), we start by splitting each
quad element along its smaller diagonal to transform QA and QB

into two triangle meshes TA and T B . Next, we perform the boolean
operation between TA and T B using [Zhou et al. 2016]. The result
is the new triangle mesh T bool. Notice that the triangles in Tbool

are of two kinds: (i) the triangles from the input quads; (ii) the

, Vol. 1, No. 1, Article . Publication date: December 2019.

QuadMixer: Layout Preserving Blending of Quadrilateral Meshes • 5

(a) (b) (c) (d) (e) (f)

Fig. 6. Patch layout retraction: (a) The initial patch layout of the two meshes. (b) The two quad meshes are split into triangle meshes to perform the boolean
operation, and then the triangles are clustered to recompose the original quads when possible. (c) Original patches are retracted to maintain a certain geodesic
distance from intersection line. (d) The new patches are extracted by repeatedly finding the largest rectangles composed of quads in the partially preserved
patches. (e) Small patches are pruned. (f) The final quadrangulation.

triangles modeling the intersection region between the two meshes.
The exact implementation of the boolean operations guarantees
that the vertices of the new triangles lie on the input mesh.
We now need to rebuild the quad patch layout. We start by pre-

serving the quads of QA and QB that do not contain triangles not
changed in the boolean operation (Figure 6.b). Then we consider, as
part of a blending area that will be remeshed, also the quads that are
close to the intersection curve to provide sufficient space to blend
between quadrilateral layouts smoothly. For this area, we consider
the quads on each side where their geodesic distance to the intersec-
tion line is below a given threshold of δr which is proportional to
the average edge of the retracted patches (Figure 6.c). At this point,
we have a collection of un-organized quads that we need to assem-
ble into patches by building a new layout. The idea is to prefer the
formation of large, compact rectangular patches with a regular and
straight boundary with the remaining triangulated surface. For this
purpose, we repeatedly search, in the set of un-organized quads, the
largest inscribed rectangle composed only by quads not associated
with any entirely preserved patch (Figure 6.d). Specifically we use
the largest rectangle in a histogram (see [Morgan 1994], chapter 21)
algorithm to generate this new set of rectangular patches.
Finally, we perform a pruning step that eliminates all the newly

created patches having a number of forming quads below a given
threshold (Figure 6.e). We set this threshold as a fraction of the
average area of the current patches.

At the end of this step, we obtain a new quad-only mesh Q0 and
a triangulated surface T 0. Notice that because of the robust and
precise implementation of the boolean operations, the triangle and
the quad meshes will necessarily share the same set of boundary
edges, that is, the boundary of Q0 coincides precisely with the
boundary of T 0.

3.2 Patch Subdivision
We now need to transform the triangulated portion of the surface
T 0 into a quad mesh Q1 that, once attached to the preserved quad-
rangulation Q0, will become the final quad mesh of the mixed shape.
To be able to join the two portions correctly, we must match, for
each portion of the boundary of Q1, the number of subdivisions of
Q0 along the common border. Since the number of edges along the
boundaries is unchangeable, the problem becomes untractable with

methods that derive quadrangulations from field-aligned global pa-
rameterizations [Bommes et al. 2009]. To the best of our knowledge,
none of these methods can guarantee to produce valid quadrangula-
tions for an arbitrary subdivision of the boundaries.

Hence, we rely on procedural methods that are explicitly designed
to produce valid quadrangulations for a given input boundary sub-
division. These methods automatically insert singularities in the
interior of the patch to accommodate for the changes in the resolu-
tion needed to match the prescribed boundary subdivisions. How-
ever, these methods work only on input patches homeomorphic to
a disk, and with a given maximum number of sides. In particular,
the method by Takayama et al. [Takayama et al. 2014] requires the
number of sides of the input patch to be between three and six. As a
consequence, to use this method in our pipeline, we need to split the
triangulated surface T 0 into patches respecting these requirements.

3.2.1 Field-aligned Patch Tracing. We produce a valid decomposi-
tion via a two-step process: (i) we first derive a smooth cross-field;
(ii) we iteratively trace polylines along the cross-field to create a
proper patch decomposition. Every trace starts from a border vertex
and ends on another border vertex, following the flow of the un-
derlying field. To ensure that the patch layout will blend smoothly
with the existing quadrangulation Q0 at the border, we align the
cross-field along the boundaries, and we smooth it in the interior.
We can also include in the field computation any additional condi-
tions on prescribed curvature directions. However, given the small
areas covered by the boundaries, these conditions are usually not
taken into account.

The following are the steps of the subdivision pipeline:

• We perform a re-meshing of the initial surface T 0 keeping
fixed all triangles that have an edge on the boundary. We
use this step to remove badly shaped triangles appearing
along the intersection lines, blending the tessellation with
the boundary constraints. This pre-processing step increases
the robustness of the overall approach. We use the iterative
approach included in the Meshlab framework [Cignoni et al.
2008].

• We compute a smooth cross field that conforms to the bound-
ary using the poly-vector field smoothing [Diamanti et al.
2014]. The cross-field is computed for each face and then

, Vol. 1, No. 1, Article . Publication date: December 2019.

6 • Nuvoli, Hernandez, Esperança, Scateni, Cignoni, and Pietroni

(a) (b) (c) (d) (e)

Fig. 7. Patch tracing procedure: (a) The Initial patch; (b) The re-meshing step; (c) Cross field computation; (d) Concave corner tracing; (e) Final splitting of the
patches to match the requirements. This patch is the one shown in the accompanying video when displaying the two intersecting fertility models.

re-interpolated for each vertex considering the invariance to
π
2 rotations.

• We split all concave corners by tracing polylines with an
end-point in the corner using [Campen et al. 2012].

• We iteratively re-apply this step for any sub-patch not yet
respecting the conditions imposed by the constrained quad-
rangulation algorithm.

Fig. 8. On the top left the initial corner classification: we mark each angle
either as convex or as concave; on the top right we show the directions
stemming from concave vertices that we use for splitting the patch in quads;
on the bottom we show how we can split the concave corner into a flat and
a convex corner using a single trace (left), or into three convex corners using
two traces at the same time.

Patch configuration. After computing a cross-field on the trian-
gle mesh T 0 (for a more exhaustive description of cross-fields see
[Vaxman et al. 2017]), we classify each border vertex of the triangle
mesh T 0 as convex (if less than π − π/8), concave (if greater than
π + π/8), or flat elsewhere. The classification of a vertex vi (see
Figure 7 for an example) is based upon the angle between the two
edges of T 0 incident on vi . We iteratively trace polylines until each
patch has a number of sides between three and six.

Each vertex has a different number of possible directions for trac-
ing the splitting pipelines (yellow arrows in Figure 8): the concave
vertices have two tracing directions, the flat vertices have one trac-
ing direction, and the convex vertices have no tracing directions.
To reduce the number of sides in the patch, we repeatedly trace the
subdividing polylines (the red lines in Figure 8) following the tracing
directions. Note that each split of a patch reduces the number of
sides in the two resulting parts by, at least, one.

Fig. 9. Tangential (left) and orthogonal (right) path intersections.

Each split changes also the classification of the associated bound-
ary vertex as follows (see Figure 7 for examples of this reclassifica-
tion):

• A single trace splits a concave corner into a convex and a flat
corner.

• Two traces stemming from the same concave corner split it
into three convex corners.

• A trace splits a flat corner into two convex corners.
• Two orthogonally intersecting traces originate four convex
corners.

• A trace can never split a convex corner.

Notice that the two corners resulting from a split belong to dif-
ferent sub-patches.

Cross-field generation. To associate a cross-field to the triangle
mesh T 0, we use the anisotropic field tracing strategy as proposed
in [Campen et al. 2012]. We recap the tracing method in Appendix
A. In our experiments, we always have accurate results and, thus,
we do not use more sophisticated trace strategies (e.g., the ones
described in [Myles et al. 2014] or [Pietroni et al. 2016]). These
methods usually require a more complex pre-processing step, and
this might affect the interactivity of the modeling process negatively.

Once we have linked the cross-field to the mesh, every vertex has
an associated tracing direction in theM4 domain, as described in
[Campen et al. 2012]. When two traces intersect, we classify their
intersection either as tangential or as orthogonal by looking at the
index of the field in M2. We want to avoid inserting any tangential
crossing in the final layout, as they tend to create poorly shaped,
elongated patches. Orthogonal intersections, instead, create a well-
shaped patch layout that efficiently captures the structure of the
underlying field. Figure 9 shows the difference between the two
types of intersections.

, Vol. 1, No. 1, Article . Publication date: December 2019.

QuadMixer: Layout Preserving Blending of Quadrilateral Meshes • 7

Concave vertex tracing. We trace the polylines that split the patches,
choosing first the ones that have an
end-point in a concave vertex. When
multiple alternative traces are avail-
able, we follow these selection heuris-
tics: (i) we never add a new trace if
it introduces tangential intersections;
(ii) we favor traces starting from con-
cave vertices not yet split; (ii) we prefer shorter traces to longer
ones.
As we repeat the process in the sub-patches still having con-

cave vertices, we dramatically reduce the probability of tangential
collisions. At the end of the process, all concave vertices should
vanish, and we have a correct convex patch layout. This condi-
tion is necessary to make the procedural quad mesh generation
of [Takayama et al. 2014] to generate high-quality quadrilateral
elements. Although we have no theoretical guarantee to be able to
split all concave corners, we never encountered any failure case in
our editing session, even for complex configurations.

Patch splitting. At this point, we must still check that each gener-
ated patch has no more than six sides, where every side of the patch
consists of a sequence of edges between convex corners, and that it
is homeomorphic to a disk. If we find an unsuitable patch, we first
initialize a dense set of candidate traces that do not intersect tangen-
tially. This set is obtained by tracing from all flat border vertices, and
iteratively removing traces having tangential intersections, favoring
the shortest ones. The result of this final step is the patch layout for
T 0.

Discussion. Another possible strategy to procedurally quadran-
gulate a disk-like 3D surface has been proposed by Peng et al.
[Peng et al. 2014]. This approach requires first to derive a bijec-
tive parametrization of the triangular patch; then the final patch
layout is produced by tracing straight lines in the bidimensional
parametric space. While we share some ideas with that approach
(like the classification between concave and convex corners and the
emanating directions), we do not require any bijective parametriza-
tion, and this is a significant advantage. The decision to trace paths
directly on the surface is crucial to make the method general and
reliable. Constructing a low distortion bijective parametrization
can be difficult and time-consuming for the general case and even
particularly tricky for the thin regions which can result from the
boolean operations. Moreover, designing a cross-field that aligns to
boundary constraints leads the traced subdivision to blend the flow
among the existing quadrangulations smoothly.

3.3 Subdivision Optimization
Once we derive a proper patch layout, we have to devise the optimal
integer subdivision for each edge.We set up a global Integer Program
with multiple quadratic objective functions, and linear constraints
that contribute to obtaining a proper tessellation:

(i) A patch admits a quadrangulation only if the sum of boundary
subdivisions is even [Takayama et al. 2014].

(ii) The subdivisions on the boundaries are constrained to match
the preserved quadrangulated mesh.

(a) (b)

(c) (d)

Fig. 10. An example, with actual values, of the optimization procedure inside
a patch. In (a) each side is divided into sub-sides, considering all incident
t-junctions of adjacent patches (numerical values in red); in (b) we show that
the sum of all the edge sizes must be even; in (c) we show how regularity
pushes equal subdivisions on the opposite sides of the quad patch; in (d)
we show how isometry encourages each sub-side to match geometrically
sound values.

(iii) To increase the isometry of the tessellation, we penalize the
discrepancy of each side with respect to its ideal subdivision.
We compute the ideal subdivision for each patch that has a
border by averaging the edge size of adjacent quads. Then we
propagate that value on internal patches, and we smooth be-
tween adjacent patches in order to discourage abrupt changes
of resolution.

(iv) To increase the regularity of the tessellation, we favor the
equality of opposite edges for every 4-sided patches.

Objectives (i) and (ii) are hard constraints that have to be satisfied
to admit a valid quadrangulation, while (iii) and (iv) are energy
terms that favor the formation of nicely shaped quad layouts.
We define an integer positive variable ei for each sub-side of an

edge. Because our patch layouts admit the formation of T-junctions,
we must split each side of a patch into sub-sides by considering all
of the subdivision with respect to the adjacent patches. An example
of edge variable definition is shown in Figure 10.a.

We first define a least squares isometry energy term that penalizes
the discrepancy of every ei from its ideal size êi :

min
∑
(ei − êi)

2

s.t. ei ≥ 1 (1)

Every subdivision ei should be at least 1. For each sub-side on
the border B, we also add a linear constraint to force its value to
match the one defined by the quadrilateral mesh.

ei = qi ∀ei ∈ B (2)
As previously stated, a quadrangulation is only possible if the

sum of its subdivision is an even number. Hence, for each patch Pk ,
we include an additional linear constraint:∑

ej = 2n ∀ej ∈ Pk
n ≥ 1 (3)

For a quadrilateral patch, we want to favor the formation of a

, Vol. 1, No. 1, Article . Publication date: December 2019.

8 • Nuvoli, Hernandez, Esperança, Scateni, Cignoni, and Pietroni

regular grid tessellation. Hence, for each quadrilateral patch, we
add an energy term that favors the equality of opposite sides:

min (
∑

eu ∈S0
eu −

∑
ew ∈S2

ew)2 +

(
∑

eu ∈S1
eu −

∑
ew ∈S3

ew)2
(4)

where S0, S1,S2 and S3 are the four sides of the quadrilateral patch.
We use a parameter 0 < α < 1 to blend the two energy terms ex-
pressed by equation 1 and 4. The effect of this parameter on the
final quadrangulation is quite intuitive (see Figure 11). We verified
in our experiments that a value of α = 0.5 is a good compromise
between regularity and isometry. For complex quad layouts, we can
use norm one minimization in equation 1 to speed up the entire pro-
cess, in such case, both equation 1 and 4 are modified such that the
least-squares energy term is substituted with an absolute difference.
This modification can speed the solving up to a factor of 10 when
using ∼ 150 subdivision variables. While this approximation might
accumulate the error on single variables (rather than distributed in
as the least-squares minimization), we experimented that it works
pretty well in practice.

α = 0.01 α = 0.5 α = 0.99

Fig. 11. The regularization term governs the distribution of singularities
and the isometry of the tessellation.

3.4 On the existence of a valid solution
In order to derive a proper subdivision assignment, it is necessary
that every connected component of the triangulated patch decompo-
sition has an even number of subdivisions at the boundary. Indeed,
in case this pre-condition is not verified, it is not possible to obtain
a quadrangulation of such a patch: regardless of the internal patch
subdivision, an odd subdivision at the boundary will necessarily
introduce an unsolvable set of constraints.

Luckily, this happens only in particular cases. In the general case,

Fig. 12. A torus with a pentagonal section intersects a block (left). The
patch surrounding the intersection curve has a boundary with an odd
number of sides (5 on the torus and 8 on the block) and therefore cannot be
quadrangulated. Refining a polychord makes the boundary even (6 and 8
sides) and the patch become quadrangulable.

when blending two genus-zero quadrilateral meshes, the intersec-
tion curves will always define over each mesh disk-like regions that,
by construction, will be bounded by an even number of quads. How-
ever, when higher genus meshes are involved, it can happen that
the intersection curves cut out, over one of the meshes, regions with
a more complex topology that are bounded by multiple boundaries.
In this case, it still holds that the overall sum of the subdivisions
of all the boundaries is even, but single boundaries can have an
odd number of subdivisions. Figure 12 shows such an example: the
intersection between a torus with a pentagonal section and a box. In
this case, every single boundary over the torus will have five sides,
and the connected component identified by the intersection curves
over the torus (with a non disk-like topology) has an overall even
number of sides (10). However, the two blending regions that we
need to quadrangulate will have an odd number of sides, making
their direct quadrangulation not possible. To solve this problem, we
could refine the whole connected component with non disk-like
topology in order to make these boundaries even. However, to make
this modification minimal, we search for the shortest polychord,
connecting two odd boundaries and we refine only this strip of
quads [Daniels et al. 2008].

Note that it is always possible to find such a connecting polychord.
First consider that the overall number of the edges on the open
boundary is even (by construction: they have been generated by
removing quads from a closed mesh). Without loss of generality
assume we have just two open boundaries A, B both with an odd
edges number. Consider all the polychords exiting from the edges
of A; by contradiction suppose that there is no polychord going
from A to B, then all the polychords start and end on A covering
an even number of edges, that is wrong because we assumed A has
an odd number of edges. To handle the more generic case where
you have more than just two open odd boundaries, first, consider
that all the even boundaries could be virtually closed by quads in
any way, leaving only an even number of odd boundaries; it is then
evident that these remaining boundaries can be handled, pair by
pair, as explained.

3.5 Final quadrangulation
At this point, we have a set of disk-like triangle patches whose sides
are between the limits imposed by the quadrangulation algorithm.
Also, every patch has a single boundary. We then map the boundary
of the patch onto the borders of a regular polygon and use this map-
ping as a constraint to parameterize the interior using least-squares
conformal maps [Lévy et al. 2002]. We compute the quadrangulation
in parametric 2D space using [Takayama et al. 2014], and then we
interpolate the 3D positions of the vertices in parametric space.

4 IMPLEMENTATION DETAILS
To test the proposed layout preserving blending technique we have
implemented a small interactive system that allow to detach por-
tions of meshes and freely combine them controlling the degree of
smoothness.

, Vol. 1, No. 1, Article . Publication date: December 2019.

QuadMixer: Layout Preserving Blending of Quadrilateral Meshes • 9

(a) (b) (c) (d)

Fig. 13. The detaching tool: The user select a sequence of opposite points
on the model (a); Two offset surfaces are created (b) and (c); Two pieces are
obtained using the intersection with the offset surfaces.

(a) (b) (c) (d)

Fig. 14. The effect of the smoothing of the intersection curve: (a)The result
of the boolean operation; (b) the first smooth steps on the triangulated
mesh; (c) The quadrangulation step with tangent space smoothing; (d) the
final result after the last step of Laplacian smooth.

4.1 The detaching tool
To detach components we followed an approach similar to the one
proposed in [Ji et al. 2006]: the user has to select pairs of opposite
points on the surface that defines a smooth polyline loop that splits
the mesh into two separate components. Once we have divided the
mesh into two distinct parts, we close the holes, and we create an
offset surface that is used to detach the portion of the mesh using
an intersection boolean operation. Figure 13 shows this pipeline.

4.2 Smoothing the surface nearby the intersection curve
Given two meshes, the user can smooth along the intersection of
the two meshes providing a more attractive organic look to the final
result. However, the smoothing should not be too invasive and let
that part of the original mesh remain as close to the original as
possible.
We apply this initial smoothing step on the triangulated mesh

resulting from the first boolean operation. We first select the inter-
section curve, then we propagate a geodesic from the intersection
curve toward the interior, and we choose the subset of vertices
whose geodesic distances are below a certain threshold (we use a 5%
of the diagonal of the bounding box). Then we perform a Laplacian
smoothing on this subset of vertices. Intuitively, the vertices that
are close to the intersection lines should move more than the ones
that are far away. To obtain this effect, we linearly weight the effect
of the smoothing w.r.t. to the geodesic distance from the intersec-
tion line (see Figures 14.a and 14.b). Once the final quadrangulated
mesh is obtained, we perform an additional smooth step in tangent
space that successfully redistributes the total distortion. This step is
localized to a neighborhood of the new created surface. Finally, we
perform a Laplacian smooth close to the intersection line. Figures

14.c and 14.d show how these smooth operations can significantly
improve the final tessellation. As with any other blending tool, we
let the user exert control over the smoothing steps and on the area
of influence.

Fig. 15. Iteratively merging the fertility model to check the robustness of
the proposed approach.

5 RESULTS
We performed our test on a desktop computer with an Intel i7-8750H
processor with 16GB of RAM. We used Gurobi [Gurobi Optimiza-
tion 2018] to solve the minimization of Section 3.3. All the code is
single-threaded and not highly optimized; it has been implemented
using the VCG Library [CNR 2013], CG3Lib [Muntoni et al. 2019],
libigl [Jacobson et al. 2013b], and CGAL [The CGAL Project 2019].
To test the robustness of the proposed approach, we iteratively
added merging operations on rotated versions of the fertility model.
Our technique always produced a two-manifold closed quadrilateral
surface. Figure 15 shows some of the first steps of the test. In Fig-
ure 16, we show a full set of combinations among six meshes having
different topologies, complex connectivity, or intricate geometric
details.

We tested our method on a collection of professionally designed
quadrangulated animals. Some of the results are shown in Figure
17. The presented models have been produced through interactive
editing sessions by the authors. We composed models by simply de-
taching portions of the body from one animal and combining them
with the body of another animal. Our method always succeeded in
producing a two-manifold quadrilateral surface. Most of the orig-
inal quad layout has always been successfully preserved, and our
method was able to create a smooth flow in the blended portions of
the meshes. The operations have always been performed within 1
second for meshes in the animal dataset. The merging operations
of Figure 15 required up to 15 seconds for some of the blending
operations. As expected, the running time is proportional to the
number of triangles in the blending area that in this specific test case

, Vol. 1, No. 1, Article . Publication date: December 2019.

10 • Nuvoli, Hernandez, Esperança, Scateni, Cignoni, and Pietroni

Fig. 16. All the pairwise joins of six meshes, different in genus, complexity, and details.

Table 1. Time of execution of each step of the pipeline for the examples
generated with QuadMixer. Times are all in millisecond with the exception
of the total time which is reported in seconds.

Models K Tris Bool Trace Solve Quad Other Total

Dolphin ∪ Alpaca 3 / 2 92 79 25 44 11 0.25
Alpaca ∪ Dolphin 5.4 / 1.6 93 68 24 62 17 0.26
Mannequinn ∪ Alpaca 5.3 / 2 156 94 26 80 32 0.39
Lizard ∪ Elephant 6.2 / 2.4 144 174 29 93 23 0.46
Elephant ∪ Lizard 7.8 / 1.2 162 126 159 149 39 0.64
Armadillo ∪ Pig 9.1 / 4.6 338 259 160 198 86 1.04
Monkey ∪ Dolphin 10.7 / 3 328 198 702 360 54 1.64
Monkey ∩ Dolphin 10.7 / 3 313 166 202 27 32 0.74
Monkey / Dolphin 10.7 / 3 315 347 904 173 56 1.80
Monkey ∪ Mannequinn 10.7 / 5.3 391 451 1324 356 118 2.64
Monkey ∩ Mannequinn 10.7 / 5.3 379 129 51 12 28 0.60
Monkey / Mannequinn 10.7 / 5.3 392 206 162 299 53 1.11
Rockerarm ∪ Rod 47.6 / 17.7 790 822 720 701 238 3.27
Fertility ∪ Fertility 26.2 / 26.2 2649 3102 2402 438 223 8.81
Fertility2 ∪ Fertility 39.5 / 26.2 4179 5052 4073 728 883 14.92
Fertility3 ∪ Fertility 59 / 26.2 1628 2055 1700 920 1102 7.41

can involve most of the original surface. Timings are summarized
in Table 1.
Figure 18 reports the distribution of distortion in individual ele-

ments relative to the experiment shown in Figure 2. Distortion has

been computed by using the distance with respect to the ideal quad
as defined in [Pietroni et al. 2015]. As shown in the histograms, our
method does not affect the overall quality of the quads.

6 CONCLUSIONS
We proposed a novel powerful pipeline for freely composing quadri-
lateral meshes. Our method takes advantage from boolean oper-
ations to smoothly blend between quadrilateral meshes keeping
as much as possible the tessellation of the original surfaces. We
integrated our technique into an interactive system and tested its
effectiveness in a modeling scenario. Given the robustness and the
visual quality of the generated meshes, we believe that our compos-
ing technique might become a powerful tool in current production
pipelines allowing artists to rapidly exploit portions of existing
models instead of resorting to complete re-topology sessions.
Moreover, our method can successfully mimic all the boolean

operations, such as union, difference, and intersection.

6.1 Limitations and future work
Our method, currently, cannot efficiently preserve sharp features,
as shown in Figure 19. An exact boolean operation will introduce
sharp features, especially for the difference operation. However, our
framework can be extended to include sharp feature preservation:
feature alignment can be enforced in the step of field calculation, and
the features can be included as traces in the patch subdivision step.
The same can be done along the intersection curve. Additionally, the

, Vol. 1, No. 1, Article . Publication date: December 2019.

QuadMixer: Layout Preserving Blending of Quadrilateral Meshes • 11

Fig. 17. An overview of the final results obtained with our modelling tool. All the displayed models are available in the additional material.

Fig. 18. Distortions of the quads of Figure 2 measured using the metric
defined in [Pietroni et al. 2015] (0 means no distortion).

field can be constrained to align with these feature lines together
with boundaries. Finally, the vertices along sharp features must have
a special treatment during the smoothing. These extensions would
guarantee the preservation of sharp features.

Another limitation of our method is its dependence on the initial
resolution and the initial patch layout. We experimented that, as can
be expected, the better results are obtained if the two meshes have
a similar resolution (see Figure 20), which can be attributed to the
intrinsic limitations of quad mesh modeling. One practical solution

to this problem consists in matching the resolutions by using some
subdivision steps before performing the boolean operation. Figure 21
instead shows the sensitivity of the method to two different initial
patch layouts.

Our method cannot guarantee that the produced quadrangulation
variates smoothly while the user variates the intersection configu-
ration. The accompanying video and the examples shown in Figure
22 (top) shows this limitation: while the arm moves slowly to the
bottom, the produced quadrangulation might have some unexpected
change in the tessellation. This limitation might affect the overall
usability. The patch layout procedure can be redesigned to variate
continuously under small modifications of the intersecting region.
We believe this can be a compelling topic for future work. Neverthe-
less, we experimented a simple procedure which already provides
encouraging improvements: we randomly perturb the intersection
configuration, and we select the best tessellation for a given metric.
For this experiment we used as metric a linear combination between
the quality of the quadrilateral elements and the number of singu-
larities: 0.3 ∗Qt + 0.7 ∗Avd , where Qt is the average quad quality
using the metric in [Pietroni et al. 2015] and Avd is the average
absolute valence deficit (the absolute difference of valence for each
vertex from 4). We show the result obtained with this improvement
Figure 22 (bottom).
Finally, our approach can fail in the extreme case when the

boolean operations do not preserve any of the original quads, e.g.,
the space around the intersection lines covers all the remaining
meshes: in this case our algorithm will not produce a valid patch
decomposition and therefore will not be able to generate a quad

, Vol. 1, No. 1, Article . Publication date: December 2019.

12 • Nuvoli, Hernandez, Esperança, Scateni, Cignoni, and Pietroni

Fig. 19. Our algorithm can mimic any boolean operation on quad meshes
generating a well-shaped quad mesh which reuses the most of the initial
layout. We show here, from left to right: the input consisting of two quad
meshes (a dolphin D and a chimpanzee C) interactively placed in the scene;
the two differences; their intersection; the union, which is, typically, the
most interesting operation from a semantic standpoint.

Fig. 20. Blending meshes of different resolution.

meshing. However, this kind of situations is well managed by a
complete re-meshing of the result since with such a configuration
the original quad structure could probably not preserved.

Fig. 21. The sensitivity with respect to two different initial patch layout:
motorcycle graph (left) and emanating separatrices (right).

Fig. 22. The variation of the tessellation configurations: close geometric
configuration might cause abrupt changes in the tessellation (top); such an
artefact can be mitigated with simple improvements (bottom).

ACKNOWLEDGMENTS
Stefano Nuvoli gratefully acknowledges Sardinia Regional Gov-
ernment for the financial support of his Ph.D. scholarship (P.O.R.
Sardegna F.S.E.1 Operational Programme of the Autonomous Re-
gion of Sardinia, European Social Fund 2007-2013 - Axis IV Hu-
man Resources, Objective l.3, Line of Activity l.3.1.). This work was
supported in part by the Italian DSURF PRIN 2015 (2015B8TRFM)
project, and by the Coordenação de Aperfeiçoamento de Pessoal
de Nível Superior - Brasil (CAPES) - Finance Code 001. The base
meshes of the animals shown in figures 1,2,5,13,17, and 21 have been
professionally modeled by Paul Gonet (gonzou3d.carbonmade.com)
and are available on BlenderMarket. The author granted us the right
of redistributing the remixed models shown in the figures under the
CC-BY-NC-SA license.

REFERENCES
Autodesk. 2018. Mudbox. https://www.autodesk.com/education/free-software/mudbox
Mikhail Bessmeltsev, Caoyu Wang, Alla Sheffer, and Karan Singh. 2012. Design-driven

quadrangulation of closed 3D curves. ACM Trans. Graph. 31, 6 (2012), 178:1–178:11.
Henning Biermann, Ioana M. Martin, Fausto Bernardini, and Denis Zorin. 2002. Cut-

and-paste editing of multiresolution surfaces. ACM Trans. Graph. 21, 3 (2002),
312–321.

Stephan Bischoff and Leif Kobbelt. 2005. Structure Preserving CAD Model Repair.
Comput. Graph. Forum 24, 3 (2005), 527–536.

David Bommes, Timm Lempfer, and Leif Kobbelt. 2011. Global Structure Optimization
of Quadrilateral Meshes. Comput. Graph. Forum 30, 2 (2011), 375–384.

David Bommes, Bruno Lévy, Nico Pietroni, Enrico Puppo, Cláudio T. Silva, Marco Tarini,
and Denis Zorin. 2013. Quad-Mesh Generation and Processing: A Survey. Comput.
Graph. Forum 32, 6 (2013), 51–76.

David Bommes, Henrik Zimmer, and Leif Kobbelt. 2009. Mixed-integer quadrangulation.
ACM Trans. Graph. 28, 3 (2009), 77.

Marcel Campen. 2017a. Partitioning Surfaces Into Quadrilateral Patches: A Survey.
Comput. Graph. Forum 36, 8 (2017), 567–588.

Marcel Campen. 2017b. Tiling the Bunny: Quad Layouts for Efficient 3D Geometry
Representation. IEEE Computer Graphics and Applications 37, 3 (2017), 88–95.

Marcel Campen, David Bommes, and Leif Kobbelt. 2012. Dual loops meshing: quality

, Vol. 1, No. 1, Article . Publication date: December 2019.

https://gonzou3d.carbonmade.com/
https://www.autodesk.com/education/free-software/mudbox

QuadMixer: Layout Preserving Blending of Quadrilateral Meshes • 13

quad layouts on manifolds. ACM Trans. Graph. 31, 4 (2012), 110:1–110:11.
Marcel Campen and Leif Kobbelt. 2010. Exact and Robust (Self-)Intersections for

Polygonal Meshes. Comput. Graph. Forum 29, 2 (2010), 397–406.
Marcel Campen and Leif Kobbelt. 2014. Dual strip weaving: interactive design of quad

layouts using elastica strips. ACM Trans. Graph. 33, 6 (2014), 183:1–183:10.
Paolo Cignoni, Marco Callieri, Massimiliano Corsini, Matteo Dellepiane, Fabio Ganov-

elli, and Guido Ranzuglia. 2008. MeshLab: an Open-Source Mesh Processing Tool.
In Eurographics Italian Chapter Conference 2008, Salerno, Italy, 2008. 129–136.

CNR. 2013. The Visualization and Computer Graphics Library.
http://vcg.isti.cnr.it/vcglib/.

Joel Daniels, Cláudio T. Silva, Jason Shepherd, and Elaine Cohen. 2008. Quadrilateral
mesh simplification. ACM Trans. Graph. 27, 5 (2008), 148:1–148:9.

Olga Diamanti, Amir Vaxman, Daniele Panozzo, and Olga Sorkine-Hornung. 2014.
Designing N -PolyVector Fields with Complex Polynomials. Comput. Graph. Forum
33, 5 (2014), 1–11.

David Eppstein, Michael T. Goodrich, Ethan Kim, and Rasmus Tamstorf. 2008. Motorcy-
cle Graphs: Canonical Quad Mesh Partitioning. Comput. Graph. Forum 27, 5 (2008),
1477–1486.

Thomas A. Funkhouser, Michael M. Kazhdan, Philip Shilane, Patrick Min, William
Kiefer, Ayellet Tal, Szymon Rusinkiewicz, and David P. Dobkin. 2004. Modeling by
example. ACM Trans. Graph. 23, 3 (2004), 652–663.

LLC Gurobi Optimization. 2018. Gurobi Optimizer Reference Manual. http://www.
gurobi.com

Alec Jacobson, Ladislav Kavan, and Olga Sorkine-Hornung. 2013a. Robust inside-
outside segmentation using generalized winding numbers. ACM Trans. Graph. 32, 4
(2013), 33:1–33:12.

Alec Jacobson, Daniele Panozzo, et al. 2013b. libigl: A simple C++ geometry processing
library. http://igl.ethz.ch/projects/libigl/.

Wenzel Jakob, Marco Tarini, Daniele Panozzo, and Olga Sorkine-Hornung. 2015. Instant
field-aligned meshes. ACM Trans. Graph. 34, 6 (2015), 189:1–189:15.

Zhongping Ji, Ligang Liu, Zhonggui Chen, and Guojin Wang. 2006. Easy Mesh Cutting.
Comput. Graph. Forum 25, 3 (2006), 283–291.

Felix Kälberer, Matthias Nieser, and Konrad Polthier. 2007. QuadCover - Surface
Parameterization using Branched Coverings. Comput. Graph. Forum 26, 3 (2007),
375–384.

Bruno Lévy, Sylvain Petitjean, Nicolas Ray, and Jérôme Maillot. 2002. Least squares
conformal maps for automatic texture atlas generation. ACM Trans. Graph. 21, 3
(2002), 362–371.

Giorgio Marcias, Nico Pietroni, Daniele Panozzo, Enrico Puppo, and Olga Sorkine-
Hornung. 2013. Animation-Aware Quadrangulation. Comput. Graph. Forum 32, 5
(2013), 167–175.

Giorgio Marcias, Kenshi Takayama, Nico Pietroni, Daniele Panozzo, Olga Sorkine-
Hornung, Enrico Puppo, and Paolo Cignoni. 2015. Data-driven interactive quadran-
gulation. ACM Trans. Graph. 34, 4 (2015), 65:1–65:10.

Carroll Morgan. 1994. Programming from Specifications (2Nd Ed.). Prentice Hall Inter-
national (UK) Ltd., Hertfordshire, UK, UK.

Alessandro Muntoni, Stefano Nuvoli, et al. 2019. CG3Lib: A structured C++ geometry
processing library. https://github.com/cg3hci/cg3lib.

Ashish Myles, Nico Pietroni, and Denis Zorin. 2014. Robust field-aligned global
parametrization. ACM Trans. Graph. 33, 4 (2014), 135:1–135:14.

Ahmad H. Nasri, Malcolm A. Sabin, and Zahraa Yasseen. 2009. Filling N -Sided Regions
by Quad Meshes for Subdivision Surfaces. Comput. Graph. Forum 28, 6 (2009),
1644–1658.

Darko Pavic, Marcel Campen, and Leif Kobbelt. 2010. Hybrid Booleans. Comput. Graph.
Forum 29, 1 (2010), 75–87.

Chi-Han Peng, Michael Barton, Caigui Jiang, and Peter Wonka. 2014. Exploring quad-
rangulations. ACM Trans. Graph. 33, 1 (2014), 12:1–12:13.

Chi-Han Peng, Eugene Zhang, Yoshihiro Kobayashi, and Peter Wonka. 2011. Connectiv-
ity editing for quadrilateral meshes. ACM Trans. Graph. 30, 6 (2011), 141:1–141:12.

Nico Pietroni, Enrico Puppo, Giorgio Marcias, Roberto Scopigno, and Paolo Cignoni.
2016. Tracing Field-Coherent Quad Layouts. Comput. Graph. Forum 35, 7 (2016),
485–496.

Nico Pietroni, Davide Tonelli, Enrico Puppo, Maurizio Froli, Roberto Scopigno, and
Paolo Cignoni. 2015. Statics Aware Grid Shells. Comput. Graph. Forum 34, 2 (2015),
627–641.

Pilgway. 2017. 3DCoat. https://3dcoat.com/home/
Pixologic. 1999. ZBrush. http://pixologic.com
Scott Schaefer, Joe D. Warren, and Denis Zorin. 2004. Lofting Curve Networks using

Subdivision Surfaces. In Second Eurographics Symposium on Geometry Processing,
Nice, France, July 8-10, 2004. 103–114.

Ryan Schmidt and Karan Singh. 2010. Meshmixer: An Interface for Rapid Mesh Com-
position. In ACM SIGGRAPH 2010 Talks (SIGGRAPH ’10). ACM, New York, NY, USA,
Article 6, 1 pages.

Andrei Sharf, Marina Blumenkrants, Ariel Shamir, and Daniel Cohen-Or. 2006. Snap-
Paste: an interactive technique for easy mesh composition. The Visual Computer 22,
9-11 (2006), 835–844.

Kenshi Takayama, Daniele Panozzo, Alexander Sorkine-Hornung, and Olga Sorkine-
Hornung. 2013. Sketch-based generation and editing of quad meshes. ACM Trans.
Graph. 32, 4 (2013), 97:1–97:8.

Kenshi Takayama, Daniele Panozzo, and Olga Sorkine-Hornung. 2014. Pattern-Based
Quadrangulation for N -Sided Patches. Comput. Graph. Forum 33, 5 (2014), 177–184.

Marco Tarini, Nico Pietroni, Paolo Cignoni, Daniele Panozzo, and Enrico Puppo. 2010.
Practical quad mesh simplification. Comput. Graph. Forum 29, 2 (2010), 407–418.

Marco Tarini, Enrico Puppo, Daniele Panozzo, Nico Pietroni, and Paolo Cignoni. 2011.
Simple quad domains for field aligned mesh parametrization. ACM Trans. Graph.
30, 6 (2011), 142:1–142:12.

The CGAL Project. 2019. CGAL User and Reference Manual (4.14 ed.). CGAL Editorial
Board.

Julien Tierny, Joel Daniels II, Luis Gustavo Nonato, Valerio Pascucci, and Cláudio T. Silva.
2011. Inspired quadrangulation. Computer-Aided Design 43, 11 (2011), 1516–1526.

Amir Vaxman, Marcel Campen, Olga Diamanti, David Bommes, Klaus Hildebrandt,
Mirela Ben-Chen, and Daniele Panozzo. 2017. Directional field synthesis, design,
and processing. In SIGGRAPH ’17 Courses. 12:1–12:30.

The Foundry Visionmongers. 2018. Modo 12.1. http://www.thefoundry.co.uk/products/
modo

Zahraa Yasseen, Ahmad H. Nasri, W. Boukaram, Pascal Volino, and Nadia Magnenat-
Thalmann. 2013. Sketch-based garment design with quad meshes. Computer-Aided
Design 45, 2 (2013), 562–567.

Juyong Zhang, Chunlin Wu, Jianfei Cai, Jianmin Zheng, and Xue-Cheng Tai. 2010.
Mesh Snapping: Robust Interactive Mesh Cutting Using Fast Geodesic Curvature
Flow. Comput. Graph. Forum 29, 2 (2010), 517–526.

Jiaran Zhou, Marcel Campen, Denis Zorin, Changhe Tu, and Cláudio T. Silva. 2018.
Quadrangulation of non-rigid objects using deformation metrics. Computer Aided
Geometric Design 62 (2018), 3–15.

Qingnan Zhou, Eitan Grinspun, Denis Zorin, and Alec Jacobson. 2016. Mesh arrange-
ments for solid geometry. ACM Trans. Graph. 35, 4 (2016), 39:1–39:15.

A TRACING THE FIELD
Following [Kälberer et al. 2007], given a surfaceM , with the excep-
tion of the singularities, we make four copies of each point p ∈ M .
We associate each copy to one
direction of the cross-field. Then
each copy ofp encodes both its po-
sition and one of the orientations
of the cross field. This process cre-
ates M4, which is a stratification
of the original manifold surfaceM .
SpaceM2 is the quotient space of
M4 obtained by identifying pairs
of opposite directions. HenceM2 is composed only by two sheets.
Each sheet encodes a line-field.
We discretize M4 for tracing following the approach proposed

by [Campen et al. 2012]. Given an input manifold surface equipped
with a per-vertex cross-field, we create a graph with four nodes on
every vertex, one for each direction of the cross-field [Campen et al.
2012].
We connect each node with the neighbors whose position is

within the visibility cone of its emanating direction, for each
position, we choose the copy hav-
ing themore aligned direction.We
also augment the graph with ver-
tices belonging to the 1-ring to
provide more degrees of freedom
to the tracing process.
Given an initial node (which

corresponds to a vertex and a field direction), the tracing process is
a propagation process where at every step we select the connected
nodes whose position is the most aligned with the field. This way,
we have a fast and robust tracing setup.

, Vol. 1, No. 1, Article . Publication date: December 2019.

http://www.gurobi.com
http://www.gurobi.com
https://3dcoat.com/home/
http://pixologic.com
http://www.thefoundry.co.uk/products/modo
http://www.thefoundry.co.uk/products/modo

	Abstract
	1 Introduction
	2 Related Work
	3 Our Method
	3.1 Optimal Patch Retraction
	3.2 Patch Subdivision
	3.3 Subdivision Optimization
	3.4 On the existence of a valid solution
	3.5 Final quadrangulation

	4 Implementation Details
	4.1 The detaching tool
	4.2 Smoothing the surface nearby the intersection curve

	5 Results
	6 Conclusions
	6.1 Limitations and future work

	Acknowledgments
	References
	A Tracing the field

