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ABSTRACT

We present a method for turning a flash selfie taken with a smartphone into a photograph as if it was
taken in a studio setting with uniform lighting. Our method uses a convolutional neural network
trained on a set of pairs of photographs acquired in an ad-hoc acquisition campaign. Each pair
consists of one photograph of a subject’s face taken with the camera flash enabled and another one
of the same subject in the same pose illuminated using a photographic studio-lighting setup. We
show how our method can amend defects introduced by a close-up camera flash, such as specular
highlights, shadows, skin shine, and flattened images.

Keywords Image enhancement ·Machine learning algorithms · Deep Learning · Computational photography · Image
processing

1 Introduction

With the steady improvement of built-in digital cameras, pictures taken on smartphones and computer tablets are
becoming increasingly predominant on the Internet, even on web-based services dedicated to quality photography such
as Flickr, 500px, and Instagram. Although smartphones can take pictures that are comparable to those of digital reflex
cameras in favorable lighting conditions, they perform poorly in low light conditions. This is mainly due to the size of
their sensors, which is a constraint difficult to overcome within the small room on a smartphone. Therefore, taking
pictures in low light often triggers the camera flash, which is typically a low-power LED flash mounted side by side
with the camera lens that produces several artifacts.

One of the most common type of photograph taken with a smartphone is the so-called selfie, which is a picture of
one’s face taken by holding the phone in the hand or by using a “selfie stick”. Low-light flash photographs and selfies
are an unfavorable combination that produces images with specular highlights, sharp shadows, and flat and unnatural
skin tones. Therefore, researchers have recently started to develop several correction techniques: re-lighting and
enhancement of images with non-uniform lighting [1, 2], some of them have focused mainly on the images of faces
[3, 4, 5, 6]. In this paper, we explore the possibility of taking smartphone flash selfies and employing a convolutional
neural network (CNN) to turn them into studio portraits. Researchers have extensively used CNNs to improve pictures,
for example for creating high dynamic range images from single exposure [7], colorization [8], super-resolution [9],
and so on, as will be discussed in Section 2.3. However, our problem is especially challenging for at least three
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Figure 1: Two examples from our results. The split images show a comparison between the input and the output of our
algorithm. In the central column the input, output, and ground truth images.

reasons. Firstly, it concerns an effect that has both local and global discriminant features such as highlight and skin
tone, respectively. Secondly, we want to imitate a process that humans are very good at performing; i.e., to picture
what an image would look like if flash was not used. Finally, both previous points apply to the domain of human faces,
on which humans are extremely good to spot any kind of inconsistencies. We leverage the fact that, by their nature,
smartphone flash selfies share many common traits and make a fairly well-defined subdomain of photographs: they are
front or three-quarter single-face portraits, taken from less than one meter away with a single flash located with the
camera lenses. Our approach consists of training a CNN with a series of pairs of portraits, where one is taken with the
smartphone flash and one with photographic studio illumination. The two photographs of the same pair are taken as
simultaneously as possible, so that the pose of the subject is the same. Although the flash no-flash problem applies to a
wider application domain, the collection of images useful for this aim is still a challenge today, considering the huge
amount of data required [10] (i.e., the order of hundreds of thousand). As explained by Sun et al. [11], focusing on a
specific category for a deep learning algorithm is very important, whereas adding random categories could reduce the
performance. For this reason, the choice of the restricted dataset and task to improve the only selfie leads to a more
specialized deep learning algorithm and results in higher performance. Moreover, one of our contributions was to build
a specific dataset, which size represents a lower bound useful to train CNN to perform this task.

The remainder of this paper is structured as follows: In section 2, we review the literature most relevant to our problem.
In section 3, we introduce the network we designed and the way it is used to solve our problem. In section 4, we
describe the experimental setup used to create the training dataset. In section 5, we show and discuss the results obtained
with our method, in section 6, we comment on its limitations and finally we draw our conclusion and address future
work in section 7.

2 Related Work

In this section, we review works related to our work and photography per se; that is, without a focus on acquisition for
computer vision/graphics tasks (e.g., color acquisition for three-dimensional (3D) meshes).

2.1 Flash Photography

In two contemporary works, Petschnigg et al. [12] and Eisemann and Durand [13] proposed the idea of using a flash
photograph with low ISO (i.e., low noise) to transfer the ambiance of the available lighting into a non-flash photograph
of the same subjects/scene, to reduce noise. This is because non-flash photographs taken in dark environments suffer
from high noise to avoid blur. Other works[14] have developed this idea further by removing over/under-illumination at
a given flash intensity, reflections, highlights, and attenuation over depth.

2.2 Deep Learning

Deep learning (DL) [15] is a framework inspired by biology that enables computational models (made of nonlinear
projection) to learn high-level representation from data, by back-propagating errors [16] with respect to the model
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parameters. The most important advantage of DL is that it avoids feature engineering that is automatically inferred from
raw data. One class of DL architecture of particular interest is the CNN class, namely, DL models that mimic how the
visual cortex works. Krizhevsky et al.’s work [17] on CNNs has sparked a renaissance in the field of DL. Furthermore,
this work has pushed forward the state of the art in many imaging tasks. This has been made possible because of three
key factors: the increasing computing power of modern graphics processing units (GPUs), the availability of huge
datasets, and novel and powerful algorithms and frameworks for CNNs. To improve their learning invariance, CNNs
are typically trained on augmented data[18]; as will be shown later, data augmentation was found to be essential in our
experimentation.

2.3 Deep Learning and Computational Photography

Recently, CNNs have been applied to numerous computer vision, imaging, and computer graphics tasks
[19][20][21][22][23][24] . Furthermore, they are becoming extremely popular, and novel architectures and algo-
rithms are continually popping up overnight.

In this section, we review works with similar aims to ours, namely, starting from a single image and attempting to
improve its quality or aesthetics.

To improve the editing of selfies, Shen et al. [25] extended the FCN-8s framework [26] to automatically segment
portraits. This allows a user to automatically edit/augment portraits. For example, users can change the background,
stylize the selfie, enhance the depth-of-field, etc. Zhang et al. [27] proposed an end-to-end learning approach for
single-image reflection separation with perceptual losses and a customized exclusion loss. Their method can be used to
remove or reduce unwanted reflections in pictures.

Eilertsen et al. [7] introduced a U-Net architecture [28] for expanding the dynamic range of low dynamic range images
to obtain high dynamic range images.Similarly, Chen et al. [29] showed that U-Nets can be used successfully to debayer
images captured at low-light conditions and high ISO, which typically exhibit noise. They extensively studied different
approaches on real-world low light with real noise. For example, they tested a variety of architectures, loss functions
(e.g., L1 (least absolute deviations), L2 (least square errors), and the structural similarity index (SSIM)), and color
inputs.

Aksoy et al. [30] presented a large-scale collection of pairs of images with ambient light and flashlight of the same scene.
The images were obtained with the aid of casual photographers by using their smartphone cameras, and consequently,
the dataset covers a wide variety of scenes. The dataset was provided in order to be studied in future works for high-level
tasks such as semantic segmentation or depth estimation. Unlike their dataset, whose objective is to provide matching
between two images under uncontrolled lighting conditions, our dataset aims to change the lighting scheme by turning
from flash lighting to a controlled photograph studio light.

To the best of our knowledge, there have not been proposed approaches for removing flash artifacts such as hard
shadows and highlights from selfies as the work presented in this paper.

3 Our Approach

We designed a regression model targeted to the restricted domain of human faces. We adopted a supervised approach
where a CNN is trained by feeding pair of flash and no flash portraits. Although the main idea is straightforward, there
are several details that need to be addressed in the design of the network, the training procedure, the way the problem is
encoded in the network, and finally the loss function. All these aspects are discussed in the following sections.

3.1 Deep Neural Network

Our CNN is an encoder-decoder structured neural network that consists of two sub-networks: the first network takes
as input a flash image and performs the encoding to create a deep feature map representation; the second network takes
as input the encoder’s output and recreates the image without the flash defects. The input image encoding is performed
by the well-known Visual Geometry Group’s VGG-16[31] network. This is a CNN widely used for object detection
and classification tasks, achieving 92.7% accuracy in results on 1000 classes of objects in ImageNet (a dataset of about
14 million images).

The network is composed of 16 layers, 13 of which are convolutional layers, and 3 are fully connected layers. For our
purpose, we used only the convolutional layers, which are divided into five separate groups: the first two groups and
the last three are composed, respectively, of two and three layers (Figure 2). Each single CNN layer performs three
operations in sequence: (i) A set of linear activations is produced using several parallel convolutions by a 3× 3 kernel
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Figure 2: Our neural network architecture for transforming a flash image into a non-flash image. The first 13 blocks
represent the VGG-16’s convolutional layers, which perform the image encoding. The second part reconstructs the
output image and has several convolutional and deconvolutional layers. From the blue blocks of the VGG-16, the
shortcut connections start, which are linked with their counterparts in the decoder. The CNN input is an image taken
with the smartphone flash, and the ground truth is an image taken using simulated ambient light, on both of which the
bilateral filter is applied. The target image is the difference between the input and ground truth image, normalized in a
range between 0 and 1. The network prediction is the searched difference, which is denormalized in the range [−1, 1]
and then subtracted from the non-filtered input. The final output prediction is an image without flash highlights.

size, a stride value of 1, and a padding value set to “SAME” to preserve the spatial resolution between two convolutions;
(ii) linear activation is performed through a nonlinear activation function called ReLU (Rectified Linear Unit)[32],
which is defined as ReLU(x) = max(0, x), and ensures that the gradients remain large and consistent; (iii) a max
pooling [33] operation takes the output of the convolutional layer as input and reduces its size to match the input size of
the next layer through a downsampling operation. In particular, max pooling takes the largest value from a window
moved over the output of the convolutional layer. In this way, the extracted values from the pooling operation do not
vary [34], and the output is invariant to small translations of the input.

We developed the decoder component, which performs the decoding task, based on Eilertsen et al.’s approach[7]. In
particular, the input of the network is the output from the last VGG-16 convolutional layer after a further convolution
operation. As the change of parameters of the CNN in the training phase changes the output distribution of each layer,
it is necessary to normalize this distribution to produce an output that will be valid as the input for the next layer. For
this reason, batch normalization [35] is performed after each convolution, forcing the input of the activation function to
have mean zero and unit variance.

After each batch normalization, the obtained tensor, called the activation tensor, crosses the next activation function,
LeakyReLU [36], which is a modified version of ReLU introducing a nonzero gradient for the next inputs. To obtain
optimal CNN performance in the training phase, the slope parameter α is set to 0.2 [37].

The main features of the decoder layers are operations such as convolutions, batch normalization, deconvolutions, and
concatenations. Because our network is composed of many layers, to avoid the vanishing gradient problem [38] studied
by He et al.[39], we used an approach based on a residual learning network. This problem concerns the weight update
in the backpropagation phase, which is proportional to the gradient of the error function compared with the weight that
has to be updated. Progressing in the backpropagation phase and inverse crossing the network to update the weight
may mean that the gradient is so small as to make inefficient updates on the weights belonging to the first deep neural
network layers, and consequently, their training is stopped. A simple way to solve this problem is to use a block division
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of the VGG-16 and concatenate in depth each block’s output with its counterpart in the decoder through a link called a
shortcut connection. For this reason, we use concatenations layers.

In the image recognition task, the residual learning network is based on the assumption that the network has to learn a
residual function. If we consider H(x) to be the function that a layers group has to learn, and F (x) to be the function
that a layers group is able to approximate, whether at this function is concatenated to the group’s input, it will obtain
a function in the form F (x) = H(x) − x and a residual function in the form H(x) = F (x) + x. In this way, the
contiguous layers that belong to the group learn the residual function, and their input will be concatenated to their own
output. A similar approach is often used in image-processing tasks [40], and it retrieves the information lost through the
convolutions of the layer groups. This information can be retrieved to help the decoder to reconstruct the output image.
The proposed encoder-decoder structured neural network works in the RGB (red, green, blue) domains only, and it is
able to recreate similar input images of faces, but in a different light mode.

Starting from the VGG-16 output tensor, to reconstruct the output image, we use deconvolutional layers [41], which
transpose the convolutional layers.

3.2 Training

Our CNN was trained to minimize the loss function using an algorithm called the Adam Optimizer [42]. This algorithm
is a stochastic gradient descent with momentum (SGDM) variant[16], which manages in a different way the problem of
setting the learning rate. The choice of the learning rate can influence the CNN training convergence because a high
value can lead to a possible divergence, while a very low value can lead to a slow convergence. SGDM addresses this
problem by updating weights through a linear combination of the gradient and previous updates. Adam is an SGDM
variant, which is based on two other well-known ones, called AdaGrad[43] and RMSProp[44]. These are classified in
the category of adaptive algorithms because they adapt the learning rate for each of the parameters, leading to better
convergence results. In particular, Adam combines the advantages of the methods mentioned above: It adapts the
learning rate based on the first and second gradient moments. In our Adam configuration, the initial learning rate is
set to 10−5, while β1 and β2, called the forgetting factors, are left at the default values, 0.9 and 0.999, respectively. A
parameter, ε, used to avoid divisions by zero, is set to 10−8 , and finally the mini-batch size was set as 4 due to the input
image dimension and the GPU capability .

To increase the generalization level and to compensate for the amount of the training data available, we initialized
the weights of the VGG-16 encoder using a pre-trained model, which is used for face recognition [45], exploiting the
transfer learning concept[34]. The model was trained using a very large-scale dataset that consists of 2.6 million faces
belonging to 2600 identities (about 1000 images for each identity), using four GPU Titan Blacks. The input images of
the pre-trained model have a resolution of 224× 224 pixels, from which was subtracted the mean of the training set’s
images.

The weights of our decoder were initialized using a continuous probability distribution called a truncated normal
distribution[46], which ensures that the weights initialization has mean zero and unit standard deviation. This avoids
increasing or dissolution of the gradient, which otherwise leads to critical errors during training. The weights of the last
decoder layer were initialized using Xavier Initialization [47], which ensures that the weights are neither too large nor
too small and that the signal passing through the neural network is propagated accurately. This prevents the signal from
being amplified or reduced too much due to excessively large or small weight initialization.

3.3 Problem Encoding

The network can be used in more than one way to achieve our goal. The table in Figure 3 illustrates three alternative
encodings of the problem, showing the neural network input, target, prediction, and algorithm output for each one. We
indicate with xi the flash image, oi the uniformly lit image, and yi[A|B|C] the network prediction.

The most straightforward solution, shown in the first row of Figure 3, consists of training the neural network by
providing xi as the input, oi as the target, and, once trained, to take the network prediction yiA as the final output. With
this setting, the network converged and gave good results in terms of colors and chromaticism. On the downside, the
predictions were blurred, and small misalignments of facial expressions between xi and oi (e.g., eyes closed/open, the
position of the lips, and other facial landmarks) created very visible artifacts in the predicted images.

To reduce the blur in the images, we can train the network, giving as input the flash image and as the target the difference
between xi and oi. This way, the artifacts due to the alignment of facial expressions have been greatly reduced and the
training has been simplified. Through this approach, shown in the second row of Figure 3, the results visibly improved,
but the blur was not entirely removed.
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NN input NN target NN Prediction Output

A

B

C

xi oi yiA yiA

xi xi-oi yiB x -i yiB

BL(x )i BL(x )-BL(o )i i yiC yiCx -i

BL(o )i x - BL(x )-BL(o )i ii

Figure 3: Each row of the table shows a possible (and tested) encoding of the problem. For each row, the neural
network (NN) input, target, prediction, and algorithm output are shown. The last row shows the bilateral filter applied
to the uniform lit image (left) and the best achievable result with approach C.

Inspired by these results, we chose an encoding that decouples high-frequency details such as hairs of facial features
from low-frequency characteristics such as the global skin tone. We employed an accelerated version of the Bilateral
Filter[48], which is a nonlinear filter that is ubiquitously used to smooth images preserving the edge features. Through
this filter, we remove the input and the ground truth image’s high frequencies, and we compute the distance between two
images, normalizing it to [0, 1]. The network’s input is the filtered flash image, and the target is the distance between
the filtered input and the filtered ground truth:

ti =
[BL(xi, σs, σr)−BL(oi, σs, σr)] + 1

2
xi, oi, ti ∈ [0, 1], (1)
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where BL is the bilateral filter operator, σs = 16 is the spatial sigma value, and σr = 0.4 is the range sigma value.
These parameters were selected from guidelines parameters proposed by Durand and Dorsey [49] for separating low
and high frequencies with a bilateral filter. Indeed, they suggested that σs needs to be equal to the 2% of the size of the
maximum image dimension, and σr = 0.4. In our case, we slightly increased σs to 3% in order to increase quality
when computing the filter with the used approximation [48] because samples are drawn proportionally to σs in this
approximation.

The final reconstructed image is computed as:

predi = xi − 2yi + 1, (2)

where yi is the network output.

3.4 Loss Function

As mentioned above, we trained our neural network with images filtered using the bilateral filter as the input, and the
distance between input and ground truth filtered with the same filter as the target. The aim was to preserve the low
frequencies and retrieve them in a subsequent step from the original non-filtered image. For this reason, we minimized
the distance between the low frequencies of the input and ground truth. The objective function is therefore defined as
follows:

L(yd, td) =
1

3N

∑
i

(
(ydi − E[ydi])− (tdi − E[tdi])

)2

, (3)

where

ydi = BL(xi, σs, σr)− 2yi + 1

tdi = BL(xi, σs, σr)− 2ti + 1
. (4)

In more specific terms, N is the number of pixels , BL(xi, σs, σr) is the CNN input, xi is the flash image, yi is the
predicted difference of the CNN, and ti = BL(xi, σs, σr)−BL(oi, σs, σr), where oi is the ground truth. The bilateral
filter’s arguments are the same in equation (1). Replacing equation (4) in equation (3), and by simplifying and exploiting
the linear property of the mean, the objective function can be rewritten as:

L(y, t) =
4

3N

∑
i

(
(ti − yi) + E[yi − ti]

)2

. (5)

To avoid negative values affecting the CNN convergence due to activation functions, we normalized the target difference
image in the range [0. . . 1] (2). In particular, since ReLU and LeakyReLU are non-saturating nonlinear activation
functions[50] [51], they tend to eliminate completely or partially the negative output values of each layer, leading to
faster convergence than saturating nonlinear activation functions such as tanh, which lead to longer training times and
a slower convergence. Furthermore, it has been shown that rectified units are much more efficient for tasks concerning
images[52] [53]. Therefore, the network will perform predictions in the [0, 1] range; for this reason, the values are
reported in the [−1, 1] range and subsequently subtracted from the input values. If we consider the bilateral filter
function and perform a further substitution, we can insert the original non-filtered images into equation (4), and the
objective function can be explicitly rewritten as:

L(y, x, o) =
4

3N

∑
i

(
(BL(xi, σs, σr)−BL(oi, σs, σr)− yi)+

+E[yi −BL(xi, σs, σr) +BL(oi, σs, σr)]

)2
(6)

Mean subtraction is performed for each channel of each image pixel by pixel only in the evaluation phase of the
objective function, to centralize the data and to distribute the weights of each image across the training in a balanced
manner, so that each image gives the same contribution to the training and does not have more or less important than the
others. This normalization operation is performed differently for every single image, compared with the classic method
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of centralizing the data, which involves subtracting from each image the mean computed across the whole training
dataset. Because our problem is confined to a specific domain, in which the data are stationary and the image lighting
parameters are well defined and always the same both for the input and for the output, we subtracted the mean for each
single image, which was computed on the same image to remove the average brightness or intensity from each pixel.

4 Experimental Setup – Dataset Creation

We performed neural network training using pairs of photos taken with a 13 Megapixel Nexus 6 smartphone camera.
The photographs were taken in a studio equipped with four Lupoled 560 lamps to provide uniform illumination. We
choose not to use the synthetic data for pretraining because the variety and quality of the lighting artifacts that we aimed
to capture and correct needed a high number of high quality photorealistic 3D models. The generation of such models
was considered less practical and safe that direct acquisition of real examples. For each pose, a photograph was taken
with the lamps on, which were then immediately switched off, and a second photograph was taken with the smartphone
flash only. Because the switching off the lamp imposes a significant delay between the two shots (about 400ms with our
lamps), the pose of the face between the first and the second may change significantly.

To reduce the problem of face misalignment, we performed an affine alignment (i.e., translation, rotation, scale, and
shear) using the MATLAB Image Processing ToolboxTM. In particular, we considered the non-flash image as the
misaligned image (M ) and the flash image as our reference (R). Because the images have different lighting conditions,
we employed a multimodal metric[54] [55] and optimizer[56]. Once the geometric transformation was estimated,
we applied it to M , obtaining M ′, which is a better alignment to R. Note that a limitation of this approach is that
misalignments remain between open and closed eyes. After affine registration, we identified the face of a subject in M ,
M ′, and R using the Face Recognition API 1, which returns a bounding box for the photograph. Each bounding box is
used to crop the image, and then the image is downsampled to 512 × 512. As the aim of CNN is to automatically
extract the input image features, preserving globally the spatial characteristics of the images such as the edges is very
important especially in the first layers of the CNN [34]. In this way, the spatial structure of the images are preserved
and equivariance to the translation of CNN is ensured.

We collected about 495 pair of photos of 101 of people (both females and males) in different poses. Then, we augmented
the dataset in three ways. First, through 5 rotations from −20 to 20 degrees around the center of face bounding box,
using a 10 degree step. Second, by cropping the image to the face bounding box and rescaling to original image size.
Finally, images are flipped horizontally. Altogether, we augmented the initial set of examples by a factor 20, so our
training is performed with 9.900 images with a 3120× 4160 resolution (13 Megapixel).

5 Results

We evaluated the results in validation and test sets (see Figure 1) . In particular, the CNN was trained using pairs of
images with a resolution of 512× 512 in about five days using a NVIDIA Titan Xp GPU and by performing 62 epochs
and about 458,000 backpropagation iterations. We interrupted the training when the value of the loss function computed
on 1,500 images reached a low level of approximately 0.0042. To evaluate the similarity accuracy between the current
prediction and ground truth, we computed the percentage difference between the two images as follows:

acc = 100−
(

100

3w(I)h(I)

∑
i

∑
c

| Ic − Ĩc |
)

(7)

where I = td, Ĩ = yd, w(I) = width(I), and h(I) = height(I). After the training step, we obtained an accuracy
value of 96.2% (Figure 4). In the test phase, we evaluated our approach using 740 test images, obtaining a loss-test
value of 0.0045 and an accuracy value of 96.5% (Table 1).

5.1 Comparison with Reconstructed Ground Truth

As explained in Section 3.3, the result provided by our pipeline is obtained by subtracting the CNN prediction from
the original input image, allowing us to retrieve the high frequencies, which had been lost due to the bilateral filter. It
follows that even for a loss function L(y, x, o) = 0 the exact ground truth can never be reconstructed. Furthermore, and
more importantly, the misalignements due to pose changes between the flash and non flash photos would dominate

1https://github.com/ageitgey/face_recognition
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Figure 4: Accuracy trend in the validation set at the end of training the CNN after 62 epochs and 458,000 iterations
performed in 5 days.

when computing the input and output image differences. For these reasons, we introduce a preconditioning operator on
the ground truth as:

oi = xi − 2ti + 1 (8)

Figure 5: Samples of validation data. Each group of images is composed of: the original image taken with the smartphone
flash (top left); the flash image to which the bilateral filter was applied (bottom left); the image reconstructed by the
difference prediction of the CNN (center); the ground truth reconstructed (top right); the ground truth (bottom right).
The SSIM was computed by comparing the central image of each group and the image at top right.
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Input Output Ground Truth

Figure 6: Training set example. For each row: the original input (left); the image reconstructed by CNN prediction
(center); the ground truth reconstructed (right). The SSIM was computed by comparing the center images and the right
images.

where ti is the target difference, as explained in Section 3.4. Figure 5 shows the final result for some examples of the
validation data, while Figures 6 and 7 show, similarly, the reconstruction of example images belonging to the training
and test sets, respectively. In particular, it can be seen in Figures 5 and 7 that the information lost because of the flash,
such as hairs, beard and skin color, are retrieved through the CNN’s prediction. The shadow cast by the subject is
also corrected by the CNN to reduce the highlights due to the camera flash. By reconstructing the final image through
the non-filtered input, we retrieved the high frequencies resolving the blur problem. We evaluated the data using the
Structural Similarity Index (SSIM)[57] for each subset of the dataset. In particular, as can be seen from Figures 5, 6,
and 7, which show comparisons between ground truth and the reconstructed predictions, the SSIM average value is
around 80% for the validation set, around 92% for the test set, and around 94.5% for the training set. As a final step, we
run a Red Eye Removal filter with GIMP to present the final results only on the test set images for aesthetic reasons;
see Figure 7 . Please note that all metrics were run on images without removing the red-eye artifact (see Figure 8) .
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Input Output Ground Truth

Figure 7: Test set example. For each row: the original input (left); the image reconstructed by CNN prediction (center);
the ground truth reconstructed (right). The SSIM was computed by comparing the center images and the right images.
The SSIM was computed on the images without removing the red-eye artifact.

Loss Accuracy
Validation 0.0042 96.2%
Test 0.0045 96.5%

Table 1: Loss validation and loss test after 62 epochs. This table also shows the maximum accuracy achieved in both
phases.

5.2 Comparison with HDRNet

We compared our approach to HDRNet by Gharbi et. al[58]. This work is based on the use of a CNN inspired to the
bilateral grid processing [59] and to local affine color transforms. HDRNet is designed to learn any image operator and
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Flash Image Result

Figure 8: Two example of a real images. The subjects were detected using Photoshop Subject Detection tool and were
forwarded to our neural network with a green background. The results were blended with the original images.

hence is a suitable candidate to remove flash artifacts from photographs. In a first experiment, we trained HDRNet
end-to-end with our dataset, by feeding the network with input and target images. We used the same parameters, times
and training algorithm proposed by the authors and trained the network for 48 hours. We obtained a stable loss value of
0.0031.

Figure 9 shows the comparison with our approach. Although HDRNet is capable of approximating the colors of the
ground truth image, the flash highlights remain substantially unchanged and the blurring is extremely high making the
face unrecognizable. Note that this is also a consequence of the input and output image misalignments for which we
introduced the preconditioning operator explained at the beginning of Section 5.1. On the contrary, our result more
closely matches the studio portrait preserving the high frequencies of the images such as hair and face traits.

In a second experiment, we combined HDRNet with our encoding, that is, training HDRNet with the filtered images
as input and the difference between the input and the filtered ground truth as target (see Section 3.3). Even in this
experiment, we used the parameters proposed by the authors and trained the network for over 48 hours, obtaining a
stable loss value of 0.0007. A few result samples of this experiment are shown in Figure 10. From this figure, we can
notice that HDRNet performance has dramatically improved by using our encoding. However, our full approach (that is,
our encoding on our network) does a better job at removing the flash artifacts (i.e., highlight and shadows).

We compared the two methods by using SSIM and the Peak Signal to Noise Ratio (PSNR) between the prediction of
networks and the target images obtained a random sample of 30 images from each sub-set of the dataset (training set,
validation set, and test set). The results are reported in the Table 2. From this table, we can see that our approach results
in higher SSIM and PSNR values for all subsets.
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We use the SSIM[57] index to compare the images because such metric can measure the similarity between two images
in a way that is consistent with human eye perception. In addition, we use also the PSNR, because it is an approach that
estimates the absolute error between two images. Furthermore, such metric is often used to compare the quality of
reconstructed images, as in this case; i.e., the CNN output.

Summarizing, we can claim both that our approach outperforms HDRNet w.r.t. the specific image operator that removes
the flash artifacts, and that HDRNet benefits from our encoding strategy by producing better results than its native
end-to-end configuration.

Input HDRNet Our approach Ground Truth

Figure 9: A comparison between HDRNet end-to-end training and our approach.

Our SSIM HDRNet
SSIM

Our PSNR HDRNet
PNSR

Training 91.55% 73.93% 24.05 dB 19.71 dB
Validation 87.76% 78.51% 20.42 dB 18.84 dB
Test 89.80% 82.92% 21.28 dB 19.02 dB

Table 2: Comparisons on samples of the training, validation, and test sets. In particular, the SSIM and PSNR values are
computed on samples of 30 images extracted randomly from each dataset.
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Figure 10: An example of comparisons between HDRNet (combined with our problem encoding) and our approach.
We show one example from the training set, the validation set and the test set, respectively.

5.3 Comparison with Pix2Pix

We also compared our approach against Pix2Pix by Isola et al. [60]. Such work is based on a particular type of
Generative Adversarial Network (GAN) [61] in the conditional setting (cGAN) [62]. The use of such type of neural
network was investigated as a general-purpose solution to image-to-image translation problems. Isola et al. tested their
cGAN on several tasks such as photo generation and semantic segmentation.

In the training details, they explained that the images were randomly jittered through resizing the 256× 256 (original
size of images) to 286× 286 and then randomly cropped to come back to 256× 256. Therefore, we trained Pix2Pix
cGAN by using the training information provided for the Day → Night task, which is performed by the authors. In
particular, the network was trained using our dataset; i.e., 4 as batch size and 80 as the number of epochs. We had to
increase the number of epochs because 17 epochs, as in the case of the Day → Night task proposed by Isola et al.,
produced low quality results.

The network was trained from scratch by using a Gaussian distribution to initialize the weights with 0 as mean and 0.02
as standard deviation, as suggested by the authors. We performed a mirroring and the random jitter starting from our
image resolution 512× 512 and doubling the resizing to 572× 572.

As the previous comparison (see Section 5.2), we performed two experiments. In the first one, we trained Pix2Pix
end-to-end using our dataset by feeding the network with input and target images. The network was trained for about 9
hours. Figure 11 shows the comparison with our approach. Although Pix2Pix better approximates the ground truth
image colors, it introduces notable artifacts by changing the image content significantly. Many of these artifacts can be
seen on eyes and facial features.
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In the second experiment, we combined Pix2Pix with our encoding. We trained Pix2Pix with the filtered images as input
and the difference between the input and ground truth filtered as a target; see Section 3.3. In this case, the network was
trained for 9 hours with the same parameters used in the first case. Figure 12 shows some outcomes of this experiment.
As the previous comparison, it is possible to notice a dramatic improvement of the results obtained by combining
Pix2Pix and our encoding. However, artifacts are still present on the geometry of the image (i.e., facial features and
around eyes), even though they are not as strong as in the end-to-end training.

The results of the comparisons are visible in the Table 3, which reports the SSIM and PSNR values. As the previous
comparison, these values are computed on a random sample of 30 images for each subset of the dataset (i.e., training
set, validation set, and test set). From this table, it can be seen that our approach obtains higher values of SSIM and
PSNR for all subsets.

Finally, this comparison elicits that our approach outperforms Pix2Pix w.r.t the image operator that remove the flash
artifacts. Furthermore, Pix2Pix can benefit from our encoding strategy by generating high-quality results compared to
end-to-end training.

Input Pix2Pix Our approach Ground Truth

Figure 11: A comparison between Pix2pix end-to-end training and our approach.

Our SSIM Pix2Pix SSIM Our PSNR Pix2Pix
PNSR

Training 90% 71% 24.8 dB 17.82 dB
Validation 83.16% 73.16% 19.72 dB 17.64 dB
Test 88.78% 74.25% 20.58 dB 17.30 dB

Table 3: Comparisons on samples of the training, validation, and test sets. As before, the SSIM and PSNR values are
computed on samples of 30 images each, which were extracted randomly from each dataset.
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Figure 12: An example of comparisons between Pix2Pix (with our problem encoding) and our approach. We show
one example from the training set, the validation set and the test set, respectively.

5.4 Comparisons with Style Transfer

As our final comparison, we tested our method against the style transfer method by Shih et al. [3]. This method is
specifically meant for portraits and based on a multi-scale local transfer approach. In our tests, we used the ground-truth
image as target style to be transferred to the input image that is the ideal condition. Unfortunately, we could not try
Shih et al.’s method on a large dataset because the generation of masks and landmarks for the original code is extremely
cumbersome (i.e., more than an hour per image). Therefore, we tested on a limited number of images that are displayed
on Figure 13. As can be seen from Figure 13, the method by Shih et al. can transfer colors correctly, but it fails to
remove flash artifacts. Moreover, these are enhanced creating unnatural effects especially for eyes and hard shadows
and lighting.

6 Limitations

Thanks to the tightly bounded domain of the input, our system can provide convincing results even after being trained
with a small dataset of 495 input images (prior to data augmentation). However, results would greatly improve if a
more diverse training dataset was provided by relaxing some boundaries of the said domain. More specifically: all the
subjects were white adults, the uniform-light setting was the same for all images, and all images were acquired with the
same device.
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Input Ground Truth Style Transfer Our Approach

Figure 13: An example of visual comparisons between the Portrait Style transfer [3] and our approach. Although
there is a good match in colors several artifacts are presents such as flash hard shadows and around eyes.

7 Conclusions

We have proposed an unassisted pipeline to turn a smartphone flash selfie into a studio portrait by using a regression
model based on supervised learning. We have defined a complete pipeline, starting from data collected by well-defined
acquisition parameters, performing pre-processing by a bilateral filter, training the network, and finally, validating the
results.

We have made several comparisons using different metrics to validate our approach. Among these, we used the SSIM
that places more emphasis on the validity of the results because it measures the similarity between images in a way that
is consistent with the perception of the human eye. Besides the obvious application of our method for correcting flash
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selfies, our results allow us to conjecture that a low-quality smartphone flash selfie contains enough information for
reconstructing the actual appearance of a human face as one obtained with more uniform lighting.

The most likely future work will be to widen the acquisition domain, both in terms of hardware and illumination settings
and in terms of the age and ethnicity of photographed subjects. Then, we will build on our method by incorporating
state-of-the-art solutions for multiple-face detection, red-eye removal, and background subtraction. Our aim is to deploy
a mobile app that can be used by any smartphone user.

On the method itself, we are planning to explore the solution proposed by Larsen et al. [63] and to use our network as
the generator component of a GAN [61] where the discriminator is trained to recognize if a given image is a difference
between the bilateral filtered version of a flash and no flash images. To improve our CNN encoder-decoder architecture
as a future work, we could use ResNet or other models as encoder component [64] of our CNN as mentioned in recent
works [65, 66] .
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[30] Yağız Aksoy, Changil Kim, Petr Kellnhofer, Sylvain Paris, Mohamed Elgharib, Marc Pollefeys, and Wojciech
Matusik. A dataset of flash and ambient illumination pairs from the crowd. In Proc. ECCV, 2018.

[31] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. CoRR,
abs/1409.1556, 2014.

[32] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks. In Geoffrey Gordon,
David Dunson, and Miroslav Dudík, editors, Proceedings of the Fourteenth International Conference on Artificial
Intelligence and Statistics, volume 15 of Proceedings of Machine Learning Research, pages 315–323, Fort
Lauderdale, FL, USA, 11–13 Apr 2011. PMLR.

[33] Y. T. Zhou and R. Chellappa. Computation of optical flow using a neural network. In IEEE 1988 International
Conference on Neural Networks, pages 71–78 vol.2, July 1988.

[34] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, volume 1. MIT press
Cambridge, 2016.

[35] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing internal
covariate shift. arXiv preprint arXiv:1502.03167, 2015.

19



A PREPRINT - JUNE 5, 2019

[36] Andrew L. Maas, Awni Y. Hannun, and Andrew Y. Ng. Rectifier nonlinearities improve neural network acoustic
models. In in ICML Workshop on Deep Learning for Audio, Speech and Language Processing, 2013.

[37] Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical evaluation of rectified activations in convolutional
network. CoRR, abs/1505.00853, 2015.

[38] Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, and Jürgen Schmidhuber. Gradient flow in recurrent nets: the
difficulty of learning long-term dependencies, 2001.

[39] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 770–778, June 2016.

[40] N. Capece, U. Erra, and R. Scolamiero. Converting night-time images to day-time images through a deep learning
approach. In 2017 21st International Conference Information Visualisation (IV), pages 324–331, July 2017.

[41] M. D. Zeiler, D. Krishnan, G. W. Taylor, and R. Fergus. Deconvolutional networks. In 2010 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, pages 2528–2535, June 2010.

[42] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

[43] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and stochastic
optimization. Journal of Machine Learning Research, 12(Jul):2121–2159, 2011.

[44] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop, coursera: Neural networks for machine learning.
University of Toronto, Technical Report, 2012.

[45] Omkar M. Parkhi, Andrea Vedaldi, and Andrew Zisserman. Deep face recognition. volume 1, pages 41.1–41.12,
01 2015.

[46] John Burkardt. The truncated normal distribution. Department of Scientific Computing Website, Florida State
University, 2014.

[47] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural networks.
In Proceedings of the thirteenth international conference on artificial intelligence and statistics, pages 249–256,
2010.

[48] Francesco Banterle, Massimiliano Corsini, Paolo Cignoni, and Roberto Scopigno. A Low-Memory, Straightfor-
ward and Fast Bilateral Filter Through Subsampling in Spatial Domain. Computer Graphics Forum, 31(1):19–32,
February 2012.

[49] Frédo Durand and Julie Dorsey. Fast bilateral filtering for the display of high-dynamic-range images. ACM Trans.
Graph., 21(3):257–266, July 2002.

[50] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convolutional neural
networks. In Proceedings of the 25th International Conference on Neural Information Processing Systems -
Volume 1, NIPS’12, pages 1097–1105, USA, 2012. Curran Associates Inc.

[51] Yi Sun, Xiaogang Wang, and Xiaoou Tang. Deeply learned face representations are sparse, selective, and robust.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 2892–2900, 2015.

[52] Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted boltzmann machines. In Proceedings
of the 27th International Conference on International Conference on Machine Learning, ICML’10, pages 807–814,
USA, 2010. Omnipress.

[53] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks. In Proceedings of the
Fourteenth International Conference on Artificial Intelligence and Statistics, pages 315–323, 2011.

[54] Smriti Raghunathan, Don Stredney, P Schmalbrock, and Bradley D Clymer. Image registration using rigid
registration and maximization of mutual information. In Poster presented at: MMVR13. The 13th Annual Medicine
Meets Virtual Reality Conference, 2005.

[55] David Mattes, David R Haynor, Hubert Vesselle, Thomas K Lewellyn, and William Eubank. Nonrigid multimodal-
ity image registration. In Medical imaging 2001: image processing, volume 4322, pages 1609–1621. International
Society for Optics and Photonics, 2001.

[56] M. Styner, C. Brechbuhler, G. Szckely, and G. Gerig. Parametric estimate of intensity inhomogeneities applied to
mri. IEEE Transactions on Medical Imaging, 19(3):153–165, March 2000.

[57] Zhou Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image quality assessment: from error visibility to
structural similarity. IEEE Transactions on Image Processing, 13(4):600–612, April 2004.

[58] Michaël Gharbi, Jiawen Chen, Jonathan T Barron, Samuel W Hasinoff, and Frédo Durand. Deep bilateral learning
for real-time image enhancement. ACM Transactions on Graphics (TOG), 36(4):118, 2017.

20



A PREPRINT - JUNE 5, 2019

[59] Jiawen Chen, Sylvain Paris, and Frédo Durand. Real-time edge-aware image processing with the bilateral grid.
ACM Trans. Graph., 26(3), July 2007.

[60] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with conditional
adversarial networks. CVPR, 2017.

[61] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville,
and Yoshua Bengio. Generative adversarial nets. In Advances in neural information processing systems, pages
2672–2680, 2014.

[62] Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784,
2014.

[63] Anders Boesen Lindbo Larsen, Søren Kaae Sønderby, Hugo Larochelle, and Ole Winther. Autoencoding beyond
pixels using a learned similarity metric. In Proceedings of the 33rd International Conference on International
Conference on Machine Learning - Volume 48, ICML’16, pages 1558–1566. JMLR.org, 2016.

[64] Abhishek Chaurasia and Eugenio Culurciello. Linknet: Exploiting encoder representations for efficient semantic
segmentation. In 2017 IEEE Visual Communications and Image Processing (VCIP), pages 1–4. IEEE, 2017.

[65] Alexey A Shvets, Vladimir I Iglovikov, Alexander Rakhlin, and Alexandr A Kalinin. Angiodysplasia detection
and localization using deep convolutional neural networks. In 2018 17th IEEE International Conference on
Machine Learning and Applications (ICMLA), pages 612–617. IEEE, 2018.

[66] Vladimir Iglovikov and Alexey Shvets. Ternausnet: U-net with vgg11 encoder pre-trained on imagenet for image
segmentation. arXiv preprint arXiv:1801.05746, 2018.

21


	Introduction
	Related Work
	Flash Photography
	Deep Learning
	Deep Learning and Computational Photography

	Our Approach
	Deep Neural Network
	Training
	Problem Encoding
	Loss Function

	Experimental Setup – Dataset Creation 
	Results
	Comparison with Reconstructed Ground Truth
	Comparison with HDRNet
	Comparison with Pix2Pix
	Comparisons with Style Transfer

	Limitations
	Conclusions

