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Fig. 1. Given an input quad mesh, the FlexMaps framework first generates a coarse parametrized patch layout (a). Then, an optimization is performed to
adjust the mechanical properties of a series of embedded spiral microstructures. Once the patches are assembled, they assume the specified target shape (b).
The designed spiral layout can be fabricated flat by laser cutting and easily assembled using a specifically crafted set of connectors (c).

We propose FlexMaps, a novel framework for fabricating smooth shapes
out of flat, flexible panels with tailored mechanical properties. We start by
mapping the 3D surface onto a 2D domain as in traditional UV mapping to
design a set of deformable flat panels called FlexMaps. For these panels, we
design and obtain specific mechanical properties such that, once they are
assembled, the static equilibrium configurationmatches the desired 3D shape.
FlexMaps can be fabricated from an almost rigid material, such as wood or
plastic, and are made flexible in a controlled way by using computationally
designed spiraling microstructures.
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1 INTRODUCTION
A wide range of intriguing 3D objects can be designed and com-
posed of planar sheets of materials. Common examples are paper
craft models [Mitani and Suzuki 2004], clothing [Bartle et al. 2016],
or complex developable shapes in architecture, such as iconic build-
ings by Frank Gehry [Pottmann et al. 2015]. In all these cases, a
non-trivial relationship exists between the 2D configuration and the
resulting 3D shape. A major challenge in computational fabrication
is modeling this relationship and providing intuitive tools for de-
sign. Although significant progress has been achieved in important
classes of materials and fabrication techniques, such as designing
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folding patterns, developable surfaces, and garment patterning, de-
signs with elastic sheets that can sustain significant stretching and
bending have received little attention. This class of materials offers
interesting possibilities because, thanks to their flexibility, these
materials can go beyond the restrictions of developability and can
be used to assemble self-supporting 3D shapes.
In this paper, we propose a novel framework to build 3D shapes

out of flat, flexible panels. Taking inspiration from UV mapping, we
map a 3D surface onto a 2D domain to design a set of panels with
tailored mechanical properties. Once these panels are assembled,
their static equilibrium configuration matches the desired 3D shape.
We refer to these flexible 2D panels as FlexMaps. FlexMaps can be
fabricated with almost rigid materials, such as wood or plastic, and
are made flexible by engraving spiraling microstructures in them.

Inspired by recent works on volumetric microstructures, we con-
trol elasticity locally by continuously varying the shape of spiral
structures to obtain different bending and stretching properties.
Given some input target shape, we formulate an optimization that
efficiently determines the heterogeneous distribution of spirals by
interpolating patterns from a pre-computed database. As the tech-
nical core of our method, we introduce a data-driven two-scale
model that can approximate the essential physical behavior of our
structures. At the fine level, we parametrically generate an accurate
geometric model of a single spiral structure and simulate its behav-
ior using a non-linear FEM with thousands of degrees of freedom.
At the coarse level, we use these simulation data to parametrize a
simple rod mesh model that captures the main deformation modes
and can be efficiently integrated into a sensitivity analysis for global
shape optimization.

As demonstrated by our results, our approach allows the design
of intricate shapes such as the Stanford bunny. Our 2D microstruc-
tures can be easily fabricated by additive or subtractive techniques
through 3D printing, milling, or laser cutting. We show shapes man-
ufactured from various materials and sizes, and we demonstrate that
large objects can be economically fabricated because the production
cost scales linearly with respect to the surface area of the object.
Our method allows for an efficient design, fabrication and as-

sembly of doubly curved surfaces. It significantly differs from other
recent works that depend on pre-stress [Guseinov et al. 2017; Pérez
et al. 2017], inflation or gravitational loading [Konaković et al. 2018],
or plasticity and physical reference models [Konaković et al. 2016].
Our structures lay flat in rest configuration and their final shape is
just the result of internal elastic forces that arise when connecting
multiple patches together. We believe FlexMaps’ simplicity opens
the possibility for its direct use in a wide range of application areas,
such as industrial or architectural design.

2 RELATED WORK
Fabrication-aware shape approximation. Fabrication-aware com-

putational design allows the transformation of virtual geometric
shapes into tangible objects. Our work falls into the category of
stylized fabrication, with the aim of reproducing a stylized approxi-
mation of a given input shape. A comprehensive overview of such
methods can be found in the works of Bermano et al. [2017] and

Bickel et al. [2017]. Aesthetically, our resulting shapes resemble or-
namental curve networks. However, the primary goal of our method
is not aesthetic control over individual curves [Zehnder et al. 2016],
but achieving the required mechanical properties such that the ini-
tially flat patches approximate the desired shape once assembled.
In the following, we will first focus on methods for reproducing
shapes from initially flat primitives.
Based on the restriction that paper is (almost) inextensible but

can be easily folded, bent, and/or cut, several methods have been
developed for approximating shapes with papercraft [Kilian et al.
2008, 2017; Massarwi et al. 2007; Mitani and Suzuki 2004; Shatz
et al. 2006; Takezawa et al. 2016]. Similarly to our approach, these
methods require a good parametrization; however, in contrast to
our stretchable patches, paper is almost inextensible and therefore
requires low or even no distortion in the mapping process. Because
of the discrete nature of folds and cuts, the resulting objects com-
monly exhibit artifacts in the case of smooth target surfaces. Dudte
et al. [2016] introduced a set of geometric construction rules and a
constrained optimization algorithm to determine spatially modu-
lated origami patterns that drape complex surfaces. The authors also
investigate the accuracy at which the pattern conforms to the target
surface, as well as the effort associated with creating finer folds. Not
allowing stretch but shear, Garg et al. [2014] model the behavior of
interwoven, inextensible flat wire sheets using Chebyshev nets.
Relaxing the inextensibility constraint, Konaković et al. [2016]

rationalized surfaces via auxetic materials, i.e., flat materials that
can isotropically stretch up to a certain extent, by introducing cuts.
Inspired by this approach, we extend the concept of using cuts to con-
trol physical behavior, such as stretching, bending, and twisting. Our
method differs in several fundamental concepts. Most importantly,
while theirs is purely geometric, our considers the constitutive rela-
tion between deformation and forces. Furthermore, to realize the
shape, their method relies on a physical 3D reference model for
forming, as well as material plasticity, once the reference model is
removed. In contrast, our shapes are automatically expressed by
the computationally designed elastic properties of the surface, and
the desired shape is reached just by static equilibrium. Another
class of methods assembles shapes out of interlocking planar ele-
ments. Similar to our method, many of them rely on a fabrication
process that can be easily performed using laser cutting. While
some of the methods in this class focus on how to distribute planar
elements within the object’s volume, thus neglecting the external
surface [Cignoni et al. 2014; Hildebrand et al. 2012; McCrae et al.
2011; Schwartzburg and Pauly 2013], others approximate the surface
using planar interconnected elements [Chen et al. 2013; Skouras
et al. 2015]. Alternatively, Miguel et al. [2016] employ in-plane bent
wires as elements which are interlocked in a configuration of static
equilibrium. These methods are used to approximate a limited set
of geometries only, and unlike our method, the resulting objects
cannot exhibit smooth features.

Parametrizationmethods. Field-aligned parametrization techniques
[Alliez et al. 2003; Bommes et al. 2013, 2009; Kälberer et al. 2007] use
a cross field to orient triangles in the parametric domain. A proper
quadrangulation is a byproduct of a globally smooth parametriza-
tion and can be obtained by sampling the parametric domain at
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Fig. 2. An overview of our modeling pipeline. (a) An input mesh is split into multiple patches composed by quads. (b) The patches are mapped on a 2D domain.
(c) We embed special spiral-shaped microstructures for each quad. (d) The parameters defining the shape of spiral microstructures are optimized to improve
accuracy in the final representation. (e) Flat panels are fabricated and assembled to reproduce the input mesh.

the nodes of an integer grid. While these methods can provide
high-quality quadrangulations, the global structure of the quadran-
gulation may be very complex (singular points are not aligned and
quads cannot be grouped directly into larger patches), so they are
not directly suitable for our purpose. A different class of methods
designs coarse quad patch layouts. This class of parametrization
domain is more suitable for our application field because it directly
matches with our 2D patch layout. The approaches in [Bommes et al.
2011; Tarini et al. 2011] simplify an existing quadrangulation and
group the elements into rectangular patches. The methods proposed
in [Campen et al. 2012; Pietroni et al. 2016; Razafindrazaka et al.
2015; Usai et al. 2015; Zhang et al. 2016] design quad patch layouts
by solving a global energy minimization. Other methods, such as
those of [Campen and Kobbelt 2014; Ji et al. 2010; Marcias et al.
2015; Takayama et al. 2013] allow the user to interactively draw a
quad patch layout by using a simple graphical user interface. For a
more complete description of quadrangulation and parametrization
methods, we refer to [Bommes et al. 2012].

Designing custom elastic properties. Using small-scale material
structures is a powerful approach to tune material behavior at a
larger scale. The elasticity of an object can be controlled by tiling of
pre-computed structures [Bickel et al. 2010], obtained either by topol-
ogy optimization [Schumacher et al. 2015] or from a parametrized
design space of elastic textures [Panetta et al. 2017, 2015]. Martinez
et al. [2016] investigated an efficient method for generating proce-
dural microstructures inspired by Voronoi open-cell foams. A key
underlying concept of these methods is that there is a relationship
between local geometric characteristics and local averaged material
behavior. This approximated relationship is described by the theory
of homogenization, which assumes a sufficiently large repetition of
a constant local geometric structure to describe an averaged mate-
rial behavior [Allaire 2012; Kharevych et al. 2009]. This assumption
fails in cases in which individual structures are combined with prop-
erties varying with high frequency, as may happen in our structures.
In contrast, we approximate the behavior of individual elements
with a reduced, tailored approach based on a rod model, similar to
that recently investigated by Perez et al. [2015]. Given a deformable
surface and a set of deformed poses as input, they automatically
compute a printable rod mesh that, once manufactured, matches the
input poses under the same boundary conditions. However, their

optimization scheme (a) works on an exact representation of the
geometry, (b) directly adjusts the cross-sectional profiles of the rods
and their rest centerline, (c) is an offline approach, and (d) can adjust
stretching within a very limited range. Because of the resulting
computational cost, this limits the approach to a sparse rod network.
In contrast, our method works (a) with a reduced geometry, (b)
operates in a higher-level parameter space of microstructures, (c)
is interactive, and (d) can handle a much larger range of stretching.
Furthermore, while their meshes need to be 3D printed because of
varying cross-section profiles, ours can be more easily fabricated
from a sheet with uniform thickness.

Subspace simulation provides a framework to compute the defor-
mation of complex deformable objects efficiently, and it has been
applied for interactive material design [Xu et al. 2015]. However,
standard model reduction techniques are not suitable for our prob-
lem. First, they require costly precomputation that must be recal-
culated if the material or geometric parameters change. Recent
approaches reduce the computational cost of this operation via an
incremental update strategy [Mukherjee et al. 2016], but are limited
to small mesh changes. Second, the application to a multi-domain
problem such as ours, where each microstructure would represent
a domain, requires specific methods to seamlessly couple the differ-
ent deformable domains [Wu et al. 2015], thus creating additional
computational cost.
The topic of self-actuated material and structure design is also

closely connected to the present work. These types of structures are
usually composed of an actuation mechanism and a deformation-
limiting mechanism that, when coupled together, produce the de-
sired deformed shape. Recent examples include planar rod networks
embedded in a pre-stretched flat fabric that deploy into complex,
three-dimensional shapes [Pérez et al. 2017], or CurveUps [Guseinov
et al. 2017], which consist of an arrangement of small rigid tiles that
limit the deformation of the pre-stretched elastic sheet to which
they are glued. These methods rely on two independent mechanisms
for actuation and deformation-limiting. In contrast, our approach
simplifies the fabrication by using a single layer responsible for
both.

ACM Trans. Graph., Vol. 37, No. 6, Article 241. Publication date: November 2018.



241:4 • Luigi Malomo, Jesús Pérez, Emmanuel Iarussi, Nico Pietroni, Eder Miguel, Paolo Cignoni, and Bernd Bickel

(a) (b) (c) (d)

Fig. 3. An example of automatic merge sequence involving a final step of user intervention: (a) the initial patch layout; (b) an intermediate step; (c) the final
result of the procedure; (d) the patch layout after user editing. The entire automatic merge sequence took 59 seconds to complete.

3 OVERVIEW
Our goal is to physically approximate a given 3D smooth shape by
using a low number of fabricated flat, flexible panels and solely by
snapping together connectors on their boundaries. We achieve this
goal by flattening the 3D shape and then carefully tuning the elastic
parameters of the panels by introducing a procedural cutting pattern
so that, once assembled, it will deform to closely approximate the
input shape. Figure 2 shows an overview of our fabrication pipeline.
In the following, we introduce our system and discuss themotivation
for important design choices.

Structure of FlexMaps. A FlexMap F consists of a collection of n
quadrilateral elementsQi grouped inm patches Pj separated by cuts
and defined in a 2D domain D, and a microstructure Si enclosed by
each quad. In addition, given some input shape T described by a set
of n quads F , there exists a bijective parametrization f : D → T .
The physical creation of the shape is obtained by fabricating the
microstructure patches (by laser cutting or 3D printing), and joining
them along the cut lines.
Several factors contribute to the appearance of the final shape

once assembled: the topology of the patches, defined by the cut
lines, the position of the structures in the 2D domain, the distortion
introduced by f , and the geometric shape of the spirals Si . The 3D
shape is governed by the requirement that it must be in equilibrium;
i.e., all forces are in balance.

Our system. Our workflow starts by mapping the input surface
shape into a planar domain and creating a quadrangulationwithmin-
imal distortion (Section 4). We then embed a structure in each quad,
drawn from the parametric space of the microstructures (Section 5).
Our model, tailored for these microstructures, in combination with
a data-driven approach for estimating model parameters, allows us
to predict the resulting deformed shape in 3D at interactive rates,
as well as to automatically adjust and optimize microstructures for
improving the quality of the shape approximation (Sections 6 and 7).
To reduce the number of required patches, we employ an auto-

matic merging process. It greedily merges adjacent patches trying
to minimize the maximum distortion. Additionally, if desired, the
user can guide the process by performing merge operations along
patch-separating cuts through an interactive system.

4 COMPUTING A 2D MAPPING
As we previously introduced, producing a FlexMap requires the
initial form to be parametrized onto a 2D domain. To make the fab-
rication physically plausible, the parametrization must be bijective.
To obtain an appropriate representation of a surface once the

FlexMaps are assembled, our parametric domain should exhibit as
low distortion as possible. In our setup, keeping a low distortion has
a main practical advantage: low distortion parametrizations produce
meshings with regular, uniformly sized quads. Our reduced model
for a physically based simulation is built on the assumption that
microstructures are embedded in regularly shaped quads. Hence,
the closer the quads are to their ideal shape, the more accurate
the physical simulation. We refer to Section 8 for a more detailed
discussion on the consequences of this assumption.

A good strategy for deriving a bijective parametrization with low
distortion is to design a coarse rectangular quad layout following
the topology of a curvature-aligned cross field defined on the surface
of the object. Because quads are aligned with the main curvature
directions, they are nearly developable. Thus, they can be mapped
to a 2D space introducing as little distortion as possible.

We consider as input mesh a field-aligned quadrangulated model
produced by the automatic method proposed in [Pietroni et al. 2016].
This technique also outputs a patch decomposition, which makes it
perfectly suitable for our framework. Alternatively, we could also
use manually modeled quad meshes, in which case we would trace
parametric lines from irregular points of the quadrangulation and
split the mesh into rectangular patches. All quad meshes are further
optimized using the regularization method proposed by Pietroni et
al. [2015] to improve the shape of the quads. Our framework auto-
matically provides an initial parametrization by mapping each patch
into a portion of the parametric domain by using the as-rigid-as
possible parametrization derived from Liu et al. [2008]. This method
offers a good compromise between efficiency and the capacity to
preserve angles and areas during the mapping. We do not enforce
continuity constraints across seams as this would significantly re-
duce the degrees of freedom during the parametrization process
and increase the distortion. This step often results in a low distor-
tion parametrization with a high number of patches. Even if length
across adjacent edges does not match, the practical assembly is
guaranteed by the elasticity of the Flexmaps. Notice that, since our
base quadrangulations are globally consistent across seams, the
assembled model will not have T-junctions.
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Fig. 4. (top) Three different cut layouts: (a) base, (b) automatically computed and (c) manually edited; (middle) the introduced distortion measured as per-quad
residual of ARAP energy; (bottom) the corresponding flexmaps results. (d) Merging patches exceeding our distortion threshold will result in visible artifacts in
the resulting model.

To facilitate the assembly of the fabricated model, our framework
offers the possibility of merging adjacent patches to reduce the com-
plexity of the parametric domain. Within the space of all possible
layouts with low distortion, the final assembled configuration is
not sensitive to the shape and number of patches (see Figure 4).
Consequently, the design of the patch layout is mainly an aesthetic
design choice that determines the seams along which connector
elements are placed.
In this light, we give the user the possibility to define a custom

layout by using a simple interactive interface or rely on an automatic
merging procedure. Our automatic merging algorithm iteratively
merges adjacent partitions, prioritizing operations based on the
lowest generated distortions. As in [Poranne et al. 2017], operations
that induce a distortion exceeding a certain threshold are forbidden
(maximum ARAP-energy of 0.035). Similarly, we disable operations
that produce long thin or highly irregular patches because those will
be difficult to assemble (i.e., minimum area-square-root to perimeter
ratio of 5). The merge process proceeds in a greedy fashion until

no possible merge operation remains. Both manual and automatic
merging can be seamlessly alternated.

5 MICROSTRUCTURE DESIGN
Our framework can be applied to any simple pattern parametrized
by a small set of scalar values. We seek a microstructure design that
satisfies the following conditions: (a) it fits within the boundaries of
a regular quad, (b) it can be tiled to cover the input surface and create
a unique connected structure, (c) it can change its elastic properties
depending on its parameters, (d) it has sufficient flexibility to assume
a doubly curved shape, and (e) it is easily fabricable by carving a
rigid material.
One possible option would be to use planar no-sag springs; this

alternative was initially considered and then rejected due to a sub-
optimal use of quad space which affects the final aesthetics and
deformation range. In the end we found that the spiral-shaped ge-
ometry shown in Figure 5 (left) fits perfectly with our applicative
scenario.
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Fig. 5. Left: descriptors determining the geometry of our spiral-shaped
microstructrures. Right: assemblies made out of spirals can smoothly variate
the twist (vertical axis) and width (horizontal axis) of the spirals. This allows
us to specify heterogeneous elastic properties throughout the parametrized
surfaces.

Our structure is composed by four Archimedean spirals having
the same origin and constant separation distance. Thanks to the
lengths of their arms, our spirals are capable of efficiently distribut-
ing the internal stress due to large deformations without breaking
apart. Hence, as noticed by [Zarrinmehr et al. 2017], this design
is capable of showing high flexibility, changing surface area, and
approximating double curvature. In addition, carving spiral pat-
terns from rigid sheets has been previously explored in the design
community as an alternative to kerfing and living hinge modeling.
Finally, spirals are easily parametrizable which allows us to explore
the deformation space of each design.
Our spirals are geometrically determined by three parameters:
(1) Scale, s , the diameter of the circumscribed circle.
(2) Twist, ϕ, an angle that determines the number of windings.

It defines the deviation at the origin of the spiral between the
twisted arm and the base cross-shaped configuration.

(3) Width, w , which determines the shape of the rectangular
cross-section. We keep the height h fixed so that the structure
can be easily carved from a planar sheet.

The 2D curve corresponding to a single spiral arm can be computed
using the following parametric formula: for an arc-length parameter
t ∈ [0, 1], x(t) = r (t) cos(tϕ) and y(t) = r (t) sin(tϕ), where r (t) =
0.5 s(1 − t). The 3 remaining spirals are computed by rotating the
first one by 90◦, 180◦ and 270◦ respectively. The final 3D surface is
obtained by extruding the rectangular cross-sectionw ×h along the
path defined by the spirals.

We found that these three parameters are a good compromise be-
tween expressiveness and efficiency in the exploration of the defor-
mation space. When tiled within a quad mesh, each microstructure
is connected to its neighbors at the mid-point of their shared edge.
While the scale of each spiral is locally determined by the size of the
parametrized quad, the width and twist can still be adjusted. Both
parameters produce different nonlinear effects on the deformation
behavior of the spiral and keeping them separated allows for larger
strain ranges. As shown in Figure 5 (right), the spiral assembly can
continuously variate these parameters. The variation of each spiral
geometry implies a change on the elastic properties of the overall

structure, which allows us to locally control the physical properties
of the FlexMap to better approximate target shapes.

In the following, we refer to these geometric magnitudes as spiral
descriptors, di = {s,w,ϕ}. Given a target mesh T , defined by a set
of quads F , |F | = n, a fabricable FlexMap design is then completely
determined by a 2D parametrization of the mesh Q together with
the vector of spiral descriptors d = {d1, . . . , dn }.

6 SPIRAL STRUCTURE SIMULATION
Our method relies on physical simulation to predict the deformation
behavior of FlexMaps. One straightforward solution would be to use
a volumetric FEM model, where the geometry of the spiral structure
is explicitly represented. Although that approach would provide a
very accurate approximation, the high computational cost makes it
unsuitable for an interactive design application.

Instead, we propose a reduced mechanical model based on the rod
coupling formulation in [Pérez et al. 2015] that approximates the
range of deformations of the much more complex spiral structure.
Following a data-driven approach, we characterize the elastic prop-
erties of the reduced model as a function of the spiral shape. To this
end, we first sample regularly the space of the spiral descriptors. For
each individual spiral, we then find the parameters of the reduced
model that best match the behavior of an accurate FEM simulation.
This results in a discrete map from spiral descriptors to reduced
model parameters, which is finally interpolated using a radial basis
function network (RBFN). In the following sections, we will describe
each step in detail.

6.1 Spiral reduced model
We represent each spiral using a rigid body attached to a series of
edges with adapted frames. Each edge connects the tip of an arm of
the spiral to the central point. Frames allow us to effectively capture
the deviation of each arm with respect to the rigidly rotated spiral,
independently considering stretch, bending, and twist deformation
(see Figure 6).

Spiral elastic energy.

We describe the kinematic state of a 4-arm spiral using one central
node, c ∈ R3, 4 extremal nodes, ri ∈ R3, 4 orthonormal frames,mi =

{ti , ni , bi } ∈ SO(3), and three Euler angles, γ ∈ R3, which represent
the rigid rotation of the spiral R(γ ). Note that the frames are adapted
to each corresponding edge, and thus, the following condition must
hold: ti = ei/∥ei ∥, for ei = (ri − c). To avoid using constraints,
we take the curve-angle frame representation from [Bergou et al.
2010] and express each deformed framemi through a rotation roll θi
around the edge of an adapted reference framemi ,mi = R(ei , θi )mi .
Reference frames are initialized at the rest configuration equal to
the rest frame m̄i and kinematically determined through parallel
transport at any deformed configuration. For a typical spiral with
four arms, this discretization results in a state vector of 22 DoF,
q = {c, r1, . . . , r4, θ1, . . . , θ4,γ }.
Given this discretization, we compute the elastic potential of a

single spiral as the sum per edge ei of stretch Vs , bending Vb , and
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Fig. 6. A single spiral (a) undeformed, (b) stretched, (c) bent, and (d) twisted. For each individual arm, our reduced model captures the length difference, as
well as the deviation of the deformed frame (green) with respect to the rigidly rotated rest frame (blue). Although for bending deformations the normal and
the tangent of the arm might deviate from the rigid transformation, in purely twist deformations the tangent remains undeformed.

twist Vt energy terms:

V =
4∑
i=1

Vs (ei ) +Vb (mi ,mR
i ) +Vt (mi ,mR

i , θi ). (1)

Here, mi = R(ei , θi )mi is the i-th deformed frame, and mR
i =

R(γ ) m̄i is the i-th rigidly-rotated rest frame. The energy terms are
defined as follows:

(1) Stretch energy. Stretch strain depends on the deformed-to-
rest edge length ratio, s = ∥e∥/∥ē∥, where the bar symbol
ēi refers to magnitudes evaluated at the rest configuration.
For stretch stiffness ks and integration domain D = ∥ē∥, the
stretch energy is

Vs =
1
2
ks D (s − 1)2 . (2)

(2) Bending energy. Bending strain measures the deviation be-
tween two orthonormal frames m1,m2, and is expressed in
terms of the normal and binormal curvatures, κn = 0.5κb ·

(n1 + n2) and κb = −0.5κb · (b1 + b2), respectively. Here, κb
is the curvature binormal as defined in [Bergou et al. 2008].
For the bending stiffnesses kb0,kb1 and integration domain
D = ∥ē∥, the bending energy is

Vb =
1
2

1
D

(
kb0 κ

2
n + kb1 κ

2
b

)
. (3)

(3) Twist energy. Twist strain is directly determined by the
roll angle that defines the edge frame, plus a reference twist
ψ (mi ,mR

i ) introduced when parallel transporting the refer-
ence frame (see [Bergou et al. 2010]). For twist stiffness kt
and integration domain D = ∥ē∥, the twist energy is

Vt =
1
2

1
D
kt (θ +ψ )

2. (4)

Note that the bending and twist energies depend on all DoF. Twist
forces acting on the edge ei and Euler angles γ are non-zero due to
their influence on the parallel transport and the reference twistψi .
Similarly, bending forces acting on roll angles θi and Euler angles γ

are non-zero due to their effect on the deformed and rigidly rotated
frames. Themechanical behavior of a single spiral is then completely
determined by four model parameters p = {ks ,kb0,kb1,kt }

Spiral assembly structure.

We model the spiral assembly as a quadrangular mesh S that
we call the spiral mesh. The topology of the mesh is defined as a
set of vertices V , |V| = n, which represents the center of each
spiral, and a set of edges E, |E | =m, which models the interaction
between each pair of neighboring spirals. Note that this mesh can
be easily computed as the dual of the target mesh, T . Each spiral
shares with its neighbors the DoF corresponding to its arms, i.e.,
roll angles θi and edges ei , including central and extremal nodes.
Only Euler angles γ representing the rigid rotation remain unique
for each individual spiral. This discretization results in a global state
vector q = {γ1, . . . ,γn, c1, . . . , cn, θ1, . . . , θm } ∈ R6n+m .

Given this discretization, the overall elastic potential can be com-
puted as the sum of the potentials of each individual spiral. As
spiral arms are shared, the integration domain D in Equations 2,
3, and 4 must be modified to account for the overlap. Note that
two neighboring spirals might not be of identical sizes and thus the
corresponding portion of the shared edge is not equal.
Using this model, the elastic behavior of the spiral structure is

completely determined by a vector, p = {p1, . . . , pn } ∈ R4n , with
pi the model parameters of the i-th spiral. In the next section, we
describe how these parameters can be fitted to match the elastic
behavior of a high-resolution FEM model.

6.2 Model parameter fitting
Equipped with the reduced model, we next characterize model pa-
rameters to match the elastic behavior of a high-resolution FEM
simulation. Following a data-driven approach, we populate a data-
base with volumetric models of individual spirals that encompass
the space of all possible spiral geometric shapes. To this end, we
regularly sample spiral descriptors dwithin the fabricable range, i.e.,
s ∈ [0.01, 0.03]m,w ∈ [0.001, 0.002]m, and ϕ ∈ [0, 360] degrees. The
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Fig. 7. Elastic energies for nine different spirals in the dataset. Each dot
represents a sampled deformation. X axis indicates the amount of elastic
potential computed using our FEM simulation and Y axis shows the pre-
dicted energy using our fitted reduced model. Samples are colored according
to the corresponding relative error.

step size in each case is adjusted leading to a total of five discrete
sampling values per parameter.
For each of the resulting 125 models, we perform r = 1000 of-

fline FEM simulations that compute the static equilibrium of the
volumetric model for random boundary conditions. We attach five
orthonormal frames F: one to the tip of each arm and one at the cen-
ter of the spiral. We also track their positions P, to capture stretch,
bending, and twist deformations. Note that given these features
we can geometrically reconstruct the DoF vector q that defines the
kinematic state of our reduced rod model.
We use a St.VK material model and linear tetrahedral discretiza-

tions ranging from 4K to 160K elements, for the smallest (simplest)
and largest (most complex) spirals, respectively. We refer to Sec-
tion 8 for a more elaborated discussion on the motivation for this
choice. In all the performed simulations, we apply forces on three
of the four spiral arm extremities and keep the remaining one fixed.
The direction of the forces is generated by uniformly sampling the
unit sphere. The magnitude is randomly sampled in a chosen range
[1, 5]N that produces a diverse range of deformations. Printing ma-
terial characterization is provided by the manufacturer resulting in
Young modulus E = 2600MPa, Poisson’s ratio µ = 0.3, and density
ρ = 1.185д/cm3. All simulations are performed with the VegaFEM
[Sin et al. 2013] built-in quasi-static solver. The average data gener-
ation time for each spiral ranges from 1 to 8 hours depending on
the complexity of the model.

Inspired by previous works using energy-based parameter fitting
(e.g., [Chen et al. 2015]), we formulate a nonlinear least-squares
problem to find the model parameters p that minimize the relative
difference in elastic potential between the reduced model and the

FEM simulation:

minp

r∑
i=1

(
V (p, qi )
U F
i

− 1

)2

. (5)

Here, U F
i refers to the elastic potential at static equilibrium of

the FEM simulation, and qi is geometrically determined from the
tracked features (Fi , Pi ). We ensure an accurate approximation of
the forces is obtained by densely sampling the source energy func-
tions. Furthermore, as the reduced model is based on a moderate
number of parameters, overfitting effects (oscillations) are prevented.
We solve this optimization problem using a standard L-BFGS algo-
rithm, as provided by the Knitro optimization package [2006]. We
repeat this process for all the 125 sampled spirals resulting in a set
of mapped pairsM = {di , pi }, i = 1, . . . , 125.
Figure 7 shows the fitting results for some of the spirals in the

dataset. The error is uniformly distributed throughout all samples
and fitted values provide a consistent generalization of spirals elastic
behavior. As it can be seen in Section 8, our reduced model is capable
of approximating with sufficient accuracy the deformation behavior
of the spiral structures for our intended application scenarios.

6.3 Spiral descriptors mapping
The fitting procedure described in the previous section results in a
discrete map for each generated sample, from spiral descriptors to
the corresponding rod model parameters. In Section 7, we describe
a spiral structure optimization scheme that relies heavily on an
accurate simulation of our reduced model. Thus, we require a con-
tinuous and differentiable function, p : R3 → R4, p = p(d), which
would allow us to compute the gradient of the objective function
with respect to spiral descriptors.

For this purpose, we seek a method capable of producing a con-
tinuous interpolation of any arbitrary set of mapped samples. We
find that RBFNs perform better than other alternatives (e.g., poly-
harmonic splines or inverse distance weighting), when predicting
the energy values from test data. Thus, we employ MATLAB’s built-
in RBFN implementation, and train the network using the set of
discretely mapped descriptorsM . To avoid scale dependent artifacts,
we preprocess the data to be in the unit range for the inputs and
outputs of the mapping function. Note that for simplicity of notation
and without loss of generality, we will ignore this normalization step
in our shape optimization formulation in the following section. The
configuration space of the RBFN is a single scalar that determines
the "spread" (i.e. the smoothness of the resulting approximation
function). To avoid overfitting, we uniformly sample this variable
in the range [0.2, 0.8] with 20 samples and took the most general
result (i.e. less number of neurons). In this process, we reject any so-
lution for which the training RMS error is higher than the threshold
ϵ = 0.001.

7 SPIRAL STRUCTURE OPTIMIZATION
FlexMaps allow us to produce elastic surfaces with heterogeneous
material properties. However, it is highly nontrivial to infer what
combination of local spiral descriptors will result in a specific global
shape. Intuitively, regions of high curvature of the mesh should be
populated with characteristically compliant spirals (i.e. low width
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Fig. 8. Our shape optimization formulation noticeably improves the approx-
imation of the input target mesh: (left) unoptimized bunny with homoge-
neous spirals; (center) unoptimized bunny with curvature-adjusted spirals;
(right) optimized bunny using curvature-adjusted spirals as initialization.

and high twist), and vice versa. Consequently we provide an ini-
tial solution where the width and twist of the i-th spiral, wi ∈

[wmin,wmax ] and ϕi ∈ [ϕmin,ϕmax ] respectively, are linearly in-
terpolated between the extremal values, considering the relative
RMS curvature ci = Ci/Cmax as a parameter, i.e. wi = wmax −

ci (wmax −wmin ) and ϕmin + ci (ϕmax − ϕmin ).
However, this straightforward solution does not often provide

satisfactory enough results (see Figure 8). To address this problem,
we further refine the curvature-adjusted solution using a shape
optimization that automatically finds the spiral descriptors d which
minimize a position-based distance to the target quadrangular mesh,
T . As mentioned in Section 5, the scale of each spiral is locally
determined by the size of each parametrized quad, but the width and
twist can still be adjusted. For notation simplicity, in the following
we denote the optimization parameters with d, although only two
of the three spiral descriptors are considered.

We formulate the problem to minimize the difference in Laplacian
coordinates between the deformed configuration of the spiral’s
centers in static equilibrium, c ∈ {c1, . . . , cn }, and the centroids of
the quads in the target shape T , t ∈ {t1, . . . , tn }. This results in the
following constrained nonlinear optimization problem:

min
q,d

д =
1
2
(L (Cq − t))2 (6)

s.t. f(q, p(d)) = 0

dmin ≤ d ≤ dmax ,

where C is a selection matrix of the spiral’s centers, c = Cq, and L
is the uniform Laplacian matrix of the spiral mesh, S. We include
the constraint f = 0 to enforce the result is in static equilibrium,
as well as bound constraints to guarantee the solution is within
a fabricable range, [dmin, dmax ]. Our optimization objective uses
Laplacian coordinates to preserve local details. Error distribution
in Cartesian coordinates favors global shape optimization leading
to over-smoothed results. Instead, the Laplacian error provides a
gradient toward matching the local curvature of the target shape.
We experimented with Cartesian coordinates and obtained results
that were worse in comparable optimization times (see Figure 9).

Fig. 9. A comparison between optimization using Laplacian coordinates
(left) and Cartesian coordinates (right). Cartesian resulting solutions are
over-smoothed leading to the lost of shape features (e.g., neck and tail of
the bunny).

We aim to keep the optimization times within an acceptable range
for user interaction, and to provide a fast solution that can be incre-
mentally updated. For this purpose, we reformulate the problem to
enforce nonlinear constraints implicitly and iteratively explore the
static equilibrium manifold. Inspired by other shape design works,
we compute equilibrium shape derivatives with respect to our de-
sign parameters. For a given deformed configuration q with spiral
descriptors d, such that f(q, p(d)) = 0, we assume any incremental
change ∆d must leave the equilibrium constraints satisfied to the
first order. Applying the chain rule,

∆f =
∂f
∂q
∂q
∂p
∂p
∂d

∆d +
∂f
∂p
∂p
∂d

∆d = 0. (7)

Notice that ∇qf and ∇pf can be analytically computed from the
energy formulation in Equation (1), and ∇dp is the Jacobian of the
RBFN map from the spiral descriptors to model parameters intro-
duced in Section 6.3. Solving for ∇dq from the resulting equation
leads to the well-known sensitivity matrix

S =
∂q
∂p
∂p
∂d
= −

(
∂f
∂q

)−1 ∂f
∂p
∂p
∂d
. (8)

The sensitivity matrix linearly approximates the change in the static
equilibrium configuration qwith respect to spiral descriptors d. This
allows us to reformulate the problem in Equation (6) in terms of an
implicit function q = q(d) as follows:

min
d

h =
1
2
(L (Cq(d) − t))2 (9)

s.t. dmin ≤ d ≤ dmax ,

where the gradient can be computed as:

∇dh = (LCq(d) − L t)T LCS. (10)

We solve the resulting bound-constrained optimization using an L-
BFGS algorithmwith line-search, as provided by theKnitro optimiza-
tion package [2006]. In practical terms, we avoid the computation of
the sensitivity matrix using the adjoint method, for directly calculat-
ing ∇ph. Note that this formulation requires equilibrium constraints
to hold at each step. At the initialization and each time there is a
new candidate solution, a static equilibrium is solved using our own
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Table 1. Statistics of our models, respectively: number of spirals and patches,
optimization time, assembly time and RMS error in Laplacian coordinates.
Timings correspond to the optimization performed with a 3.1GHz quad-core
Intel Core i7 processor (4770S).

#Spiral #Patch Opt.(s) Ass.(h) RMSE(mm)
Sphere 137 1 1.41 0.50 0.259
3Holes 937 17 21.23 5.50 0.185
Table 1856 18 78.91 5.00 0.233
Bunny 2412 52 179.00 7.50 0.610
Torso 664 9 9.14 1.50 0.605
Shell 1296 4 28.79 0.25 0.107
Botijo 2150 68 210.28 – 0.489
Hand 2250 43 141.06 – 0.800
Horse 902 28 87.15 – 0.325

Sequential Quadratic Programming (SQP) algorithm (Newton step
with back-tracking line search). These computations take around
50% of the total time. Note that, for our particular application, the
stiffness-to-mass ratio of the material used to fabricate the examples
allowed us to neglect the effect of gravity. However, extending our
method to more general materials would only require considering
the gravity force in the simulation and hence approximating the
mass and its derivatives w.r.t. spiral descriptors. Overall, this opti-
mization scheme allows us to keep computation times within the
user interaction range (see Table 1).

8 RESULTS
Design workflow. We first tested our design system on a simple

sphere, as shown in Figure 10. We mapped the sphere on a 2D
domain and the resulting patch decomposition was easily merged
to a single component. Although the presence of singularities in
the quadrangulation may induce some distortion, overall, the fabri-
cated sphere maintains its smooth shape. In general, a field-aligned

(a) (b) (d)

(c)

Fig. 10. A simple sphere as testing case. Starting from a target quadrangular
mesh (a), a decomposition (b) and parametrization (c) are computed. Once
the parametrization is populated with spirals, shape optimization leads to
the fabricated result (d) that closely match the input model geometry.

parametrization tends to concentrate distortion around singularities.
In our case, because of the tiling of the shape, that portion of the
surface is empty. In general, for our setup, having the spiral mesh
connectivity that is the dual of the target quad mesh represents a
great advantage.
We also created a number of challenging examples, shown in

Figures 11 and 14. The derivation of the initial parametrization is
performed as an automated step. Afterwards, the resulting patch
layout is refined with some manual intervention. However, as the
quad mesh is already organized into big patches, this task is simple
and fast. As mentioned in Section 4, our framework prevents the
user from merging patches that may introduce high distortion and
thereby limits the degrees of freedom. For some models, we were
able to easily and quickly design patch layouts entirely manually.
Typically, a manual merging session takes around 2 minutes for
simple models. For our most complex manually designed model (the
bunny in Figure 14), this step required 30 minutes. In any case, for
all the models, the design time was considerably faster than the
fabrication. Statistics can be found in Table 1.

Thanks to the fact that we rely on field-aligned patch decomposi-
tions, the fabricated objects appear regular, aesthetically pleasant,
and sometimes also symmetric. Plus, thanks to the underlying opti-
mization, the user can focus on the final visual impact produced by
the FlexMaps, trying to place the seams along non-visible regions
or to place them in a way that preserves objects symmetry.
Our method can be applied in a variety of potential application

fields, ranging from robotics to furniture design. As a proof-of-
concept, we tested our method with an architectural model as shown
in Figure 12. The model is composed by only 4 patches and, thanks
to the variance on the spiral pattern, we can achieve complex dou-
ble curvatures once some support is fixed to the ground applying
compressive forces.

Fabrication and Assembly. FlexMaps can be fabricated using both
subtractive and additive manufacturing technologies. We used a
Stratasys J750 3D printer with materials from the Vero family. 3D
printing of FlexMaps requires no support and is fast because of the
small sheet thickness. All examples shown in the paper are 2mm
thick. We printed special dovetail connections at every seam and
used color coding to derive a proper matching during the assembly
process (see Figure 13). A specific tolerance has been taken into
account to ensure a proper grip between adjacent connectors. The
largest object we manufactured (the bunny shown in Figure 11) is
40cm tall and 50cm deep, but our technique could easily scale to
larger models.
Laser cutting is another valid option to manufacture FlexMaps.

Thanks to the size of the workspace, this technology fits well our
workflow and can be easily used for the production of larger objects.
For the laser cut example (Table model), we used a 2mm mate-
rial sheet made of Delrin, a thermoplastic with high stiffness, low
friction, and excellent dimensional stability, that showed a similar
elastic behavior (Young’s modulus) as the VeroMaterial in our tests.

Finally, the assembly procedure greatly benefits from the intuitive
decomposition of the domain and the color coding of the seams.
However, visually comparing the partially assembled model with
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Fig. 11. Some of our fabricated examples: input target mesh, patch decomposition, optimized model, and fabricated result.

the digital model shown on a laptop helps during the assembly
process.

Validation. We measured the accuracy of our simulation by laser
scanning one of the fabricated models and computing the distance
from each simulated spiral center to the scanned surface. For this
purpose we selected our only open surface (the architectural model),
as these are the more challenging examples in terms of simulation
accuracy. We obtained errors relative to the size of the model in the
range [0.008, 4.092]%, with an RMS error of 0.971%. The resulting
scanned surface can be seen in Figure 12. We believe that this ex-
periment shows that the amount of approximation error introduced
by our reduced model is within an acceptable range for our target
applications.

Effect of quad regularity. To estimate the dependency of our frame-
work on the regularity of the quadrangulation, we produced several
simple models with increasing quad distortion and visually com-
pared the resulting deformation with our simulations. We found
that quad regularity slightly affects the deformation locally, but
the global effect is barely noticeable and this effect is compensated
when quad distortion is evenly distributed. As we use state of the
art quadrangulation methods, the deformation of the parametrized

quads with respect to a perfect square is generally low. For the Shell
(which is one of the examples with the most distorted quads), the
deformation measured in ARAP-energy is below 0.238 with median
value 0.019; yet we quantified through scanning the quality of the
approximation obtaining an RMS error below 1%, relative to the size
of the model.

Adequacy of the material model. Our selection of material model
and discretization order are motivated by the range of deformations
affecting the spirals. Note that, while the quads in the target shape
might suffer pretty severe deformations with respect to the planar
configuration, the local strain in the spiral geometry is generally low.
On an average deformed spiral, 99% of the tetrahedra have strain ϵ in
the interval [0.995, 1.005], where ϵ = tr (C)/3 and C is the Cauchy-
Green strain tensor. Under such conditions, we considered adequate
to use the St.VK hyperelastic model (quadratic strain measure C and
linear strain-stress relationship). We experimentally validated our
choice through fabrication from the earliest prototypes to the final
presented results. In all cases, we found that our predictions were
almost visually indistinguishable from the fabricated object. Yet,
our pipeline could be easily adapted to use more complex material
models if needed.
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(b) (c) (d)(a)

Fig. 12. Architectural shell featuring a doubly curved open surface fixed to the ground by four lateral supports. The figure shows (a) the target mesh, (b) the
optimized spiral mesh, (c) the resulting fabricated example and (d) a comparison between the laser-scanned surface (gray point cloud) and the expected
deformation (colored spheres). Sphere colors show the distribution of the relative error, which is in the range [0.008, 4.092]%, with an RMS error of 0.971%.

9 CONCLUSION
We have presented an interactive framework for designing and
building smooth surfaces out of flat, flexible panels with tailored
mechanical properties. Our approach maps a 3D surface onto a 2D
domain as in traditional UV mapping to design a set of deformable
flat panels. We embed these panels with flexible microstructures and
optimize their geometry such that, when the panels are assembled,
the equilibrium configuration matches the desired 3D shape. To
make this design problem tractable, we have introduced a reduced
model of our microstructures and used a data-driven approach to
characterize its elastic behavior based on FEM simulations. This
allows us to efficiently simulate objects made out of thousands of
such structures, and optimize their heterogeneous distribution to
control the global deformation behavior of our FlexMaps. Our results
show that the proposed pipeline is a very efficient tool for the rapid
design and fabrication of a variety of smooth surfaces.

Limitations and future work. Because of physical limitations on
the robustness of the material and fabrication tolerances, our mi-
crostructures require to be manufactured above a minimal size
threshold of 1cm. This implies a minimal size of our physical objects
depending on the number of microstructures they consist of.
While our design interface shows the optimization result for a

given input shape at interactive rates, currently there is no intuitive
indication on the limits of achievable shapes. Figure 15 shows two
challenging examples specifically selected to highlight the foremost
limitations of our geometric approximation. On one hand, modeling
sharp features and high frequency curvature details is limited by
the resolution of our current fabrication technology. On the other

Fig. 13. A closeup of the connectors used to secure FlexMaps across seams.

hand, multistable configurations are not explicitly considered. This
might lead to some regions of the deformation space remaining
unexplored during the shape optimization.

For future work, it would be interesting to further analyze these
limitations in order to provide a modeling interface for exploring
only achievable shapes. In addition, we do not optimize the quad
layout taking the physical effects of themicrostructures into account.
It would be interesting to consider these degrees of freedom during
the shape optimization. Finally, adding internal connections could
help in creating shapes with sharper creases and concave features.

On the practical assembly side, we remark that the dovetail con-
nectors usually work well offering a robust grip. However, in high
curvature regions when the internal stress is very high, the assem-
bly process can become more difficult. This can be solved by simply
reducing the overall thickness of the FlexMap to further lower the
stiffness of the pattern so that it is simpler to bend and assemble.
Although the material we used in our process has favorable me-

chanical properties, an interesting avenue for future work would be
to explicitly take the structural strength of structures and connec-
tors into account, similar as in the work of Panetta et al. [2017], and
extend our database to a wider range of microstructures.
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