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Abstract

We introduce a light-weight automatic method to quickly
capture and recover 2.5D multi-room indoor environments
scaled to real-world metric dimensions. To mimimize user’s
burden, we capture and analyze a single omnidirectional
image per room using widely available mobile devices.
Through a simple tracking of the user movements between
rooms, we iterate the process to map and reconstruct en-
tire floor plans. In order to infer 3D clues with minimal
processing and without relying on the presence of texture
or detail, we define a specialized spatial transform based
on catadioptric theory to highlight a room’s structure in a
virtual projection. From this information, we define a para-
metric model of each room to formalize our problem as a
global optimization solved by Levenberg-Marquardt itera-
tions. The effectiveness of the method is demonstrated on
several challenging real-world multi-room indoor scenes.

1. Introduction

The problem of determining the architectural structure
and a simplified visual representation of indoor environ-
ments has attracted a lot of attention in recent years, and
it has led to a large variety of approaches ranging from
mostly manual floor plans sketchers (e.g., [29]) to auto-
matic methods that process high-density scans (e.g., [21]).
Devices such as laser scanners often represent the most ef-
fective but expensive solution for a dense accurate acquisi-
tion [35]. Therefore their use is often restricted to specific
application domains such as Cultural Heritage or engineer-
ing, and it is hardly applicable in time-critical applications.
The emergence of Kinect-style depth cameras has lowered
the cost of methods based on active sensors, producing im-
pressive results even for building-scale reconstruction [33],
and 3D reconstruction methods based on multiple images
have recently become popular [1, 20]. In certain situations
the obtained accuracy is comparable to laser sensor sys-
tems at a fraction of the cost [28], but they typically require

non-negligible acquisition and processing time. Moreover,
most dense image-based methods often fail on reconstruct-
ing surfaces with poor texture detail. All these acquisition
methods, in addition, require considerable effort to produce
simplified structured models of buildings from the high-
density data. Commodity mobile devices, such as phones
and tablets, enable nowadays any user to perform fast multi-
modal digital acquisition and effective information extrac-
tion [6]. As the creation of simplified indoor models using
reduced human effort has a variety of applications, ranging
from free-viewpoint navigation using high-quality texture-
mapped models [3] to the management of building evacu-
ations or real-time security systems [13], using mobile de-
vices in the context of quick acquisition of simplified mod-
els of indoor environments is very attractive, as highlighted
by projects such as Google Tango [12].

In this paper, we introduce an extremely light-weight
method to quickly capture and recover 2.5D multi-room in-
door environments scaled to real-world metric dimensions
(see Fig. 1). Our main idea is to minimize both user and
computational effort by capturing and analyzing a single
omnidirectional image per room using the built-in capabili-
ties of modern mobile devices.
Approach. For many typical indoor environments exhibit-
ing a piecewise-planar structure, an equirectangular im-
age alone contains enough information to recover the room
shape. We thus perform a first segmentation and classifica-
tion of the image to roughly identify ceiling and floor, keep-
ing the classification independent of the walls’ orientation.
By exploiting theories commonly employed in catadioptric
systems [2], we define a geometric transform for virtually
projecting the room in order to highlight its structural fea-
tures. From this information, we create a parametric model
of the room to formalize and solve our problem as a global
optimization. Having the value of the height of the observer,
we obtain the shape of the room and its height in real-world
dimensions. Furthermore, if the mobile device is equipped
with IMU (Inertial Measurement Unit), through a simple
tracking of the user movements between rooms, we can iter-
ate the method to map and reconstruct the entire floor plan.
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Figure 1: We take as input one omnidirectional image of each room. To infer 3D clues without externally calculated 3D points or MVS
data, we introduce a transform to project the image gradient map to a plane, arranging the projected points in a 2D accumulation array. As
result, we obtain a 3D representation of the surrounding indoor environment coupled with its visual representation through spheremaps.

Main contributions. Our approach automatically builds
multi-room models from omnidirectional images, even
when the walls in the scene do not form right angles. We
introduce a spatial transform which returns a specific 2D ac-
cumulation array for each equirectangular image, bringing
the problem in a 2D space and recovering a prior paramet-
ric model of the room. Under the same hypothesis, we pro-
pose a voting scheme to estimate wall height and to identify
a set of boundary points in the image, enabling the solu-
tion of the reconstruction problem as a global optimization.
Since our approach is not computationally demanding, we
enable the possibility to have an acquisition and reconstruc-
tion pipeline fully implemented on a mobile device.
Advantages. Our method empowers mobile device users
with a simple pipeline to quickly sketch a metric indoor en-
vironment. A single panoramic image per room can be eas-
ily obtained by off-the-shelf guided applications, a much
simpler approach than with multi-view methods. Instead
of relying on costly offline processing, we also provide an
immediate processing with an automatic and light-weight
floor map reconstruction method. The proposed method re-
turns accurate results even for scenes with surfaces lacking
in texture and details, differently from MVS (Multi View
Stereo) methods to which our method can be consider com-
plementary. The whole pipeline returns rooms in real world
units, enabling the composition of multi-room models with-
out manual interventions. In contrast to many of the pre-
vious approaches (see Sec. 2), neither strong Manhattan
World constraints, nor further 3D information (e.g., original
unstitched images, externally calculated 3D points, MVS
data) are needed to automatically reconstruct the geometry
of the rooms. Finally, our machinery for panorama analysis
is applicable also to enhance structure classification in other
approaches [3, 15]. As indoor panoramas themselves are
gaining increased popularity (e.g., Google Maps tours), de-
veloping geometry extraction methods bridges the gap from
purely visual navigators to 3D reconstruction.
Limitations. Our method does make the assumption, al-
though weaker than Manhattan World, that the room is
piecewise planar, and that floor and ceiling are orthogo-
nal to the walls. As the proposed method requires omni-

directional images, whenever the generation of such images
fails, e.g., in narrow corridors, the method cannot be ap-
plied. Moreover, relying on a single viewpoint per room it
simplifies capture, but makes the method sensitive to strong
occlusions. Despite these limitations, the method is very
effective in a variety of indoor environments, ranging from
private houses to large public spaces, as demonstrated by
our results (see Sec. 8).

2. Related Work

Our approach combines and extends state-of-the-art re-
sults in many areas of computer vision and mobile capture.
Here, we discuss the methods which are mostly related to
our technique.
Floor plan extraction. Previous works in floor plan ex-
traction can be classified in different categories according
to the quantity of required user input (automatic, or semi-
automatic), to the geometric constraints (Manhattan World
assumption or other structural regularities), and according
to the input data. User assisted approaches have long proven
effective for floor plan reconstruction [26, 18, 24], but they
have the counter-back of requiring additional and repetitive
user inputs, as well as are prone to errors due to device
handing or manual editing. To overcome these limitations,
during last years a number of fully-automated approaches
have been presented, many of them assume a prior knowl-
edge of the scene, based on simplifying geometric assump-
tions and/or employing additional 3D information. With re-
spect to the geometric assumption, a number of methods
exploit structural regularities such as planarity or orthog-
onality as priors [16], like the Manhattan World assump-
tion [19, 18], which states that all the surfaces are aligned
with three dominant directions, typically corresponding to
the X, Y, and Z axes. With respect to the input data, many
effective methods model 2D planar maps of indoor structure
starting from 3D point clouds. First systems were derived
for processing indoor laser scan data, employing bottom-up
region growing [14], Hough lines detection [31], RANSAC
algorithm [27], and plane fitting [25]. Alternative tech-
niques take advantage of RGB-D cameras that allow a live
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capture of both depth and appearance information at afford-
able cost but they have some limitations in terms of range
distance acquisition and resolution. A common strategy is
based on consecutive frames alignment [17] by jointly op-
timizing over depth and color information matching. This
approach leads to sequential error propagation that can be
managed by loop-closure algorithms. A global alignment
of frames [22, 32] can provide more robust acquisitions.
Furukawa et al. [3] reconstruct the 3D structure of moder-
ately cluttered interiors by fusing multiple depth maps (cre-
ated from images) using the heavily constraining Manhat-
tan World assumption, through the solution of a volumetric
Markov Random Field. However regularization in MRF is
only based on pairwise interaction terms, and thus suscep-
tible to noisy input data. Cabral et al. [3] extend the work
of Furukawa et al. [10] by extracting complementary depth
cues to stereo from the single images. All aforementioned
methods obtain 2D floor plans from 3D data originating
from different sources, our technique differs from them be-
cause as input it requires a single equirectangular image for
each room to be reconstructed, and it automatically com-
putes precise 2D floor plan by using as prior information
only the height at which the spherical map is acquired to
obtain real-world metric dimensions.
Analysis of panoramic images. The rapid growth of om-
nidirectional image photography applications such as An-
droid Photo Sphere developed by Google, has led to ex-
tensive utilization of automatically stitched omnidirectional
images in a variety of circumstances, for displaying out-
door scenes and indoor rooms. With respect to scene un-
derstanding, omnidirectional images have been successfully
exploited for localizing objects [30], calibrating catadiop-
tric systems [2], recognizing view points [34], and recov-
ering indoor structures [23]. Although most of the stud-
ies dealing with the omnidirectional images are focused on
catadioptric view, many useful properties can be extended
to equirectangular images [11]. Our method exploits these
theories to describe a visual model of the scene based on the
spherical projection and minimize geometric constraints.
Furthermore, few methods [5, 36] have been recently pro-
posed for modeling indoor floor plans from omnidirectional
images, but these techniques, differently from our method,
require additional user input, and they are based on Man-
hattan world assumption.

3. Approach Overview
Similarly to approaches already proven effective [3, 9]

we perform for each room image a first classification to
identify ceiling and floor. Since not all omnidirectional im-
ages are well stitched and due to the peculiarity of many
real-world cases of indoor spherical omnidirectional im-
ages (clutter, poor lighting, ambiguity in conics and vanish
points recognition), an accurate classification of the image

is hard to make without the exploitation of externally cal-
culated 3D points and a prior knowledge of the walls orien-
tation. To face this problem we use the theory for central
panoramic systems [11] to define a spatial transform Gh

(Sec. 4) which, under specific conditions, returns 3D Carte-
sian points from angular coordinates in the spheremap. Ap-
plying the transform for an unknown wall height through a
specialized voting scheme we individuate a points set Sm

with a high likelihood to belong to the real room bound-
aries, coupled with an estimation of the wall height.

To this purpose we apply the transform to the image gra-
dient map projecting its values to a plane, arranging the pro-
jected points in a 2D accumulation array. This 2D array is
a sort of footprint of the shape (e.g. Fig. 1 center), where
points that are on the walls edges tend to concentrate their
projection in the same place, as well as points not satisfying
the hypothesis of the transform Gh do not have a real 3D
correspondence and are sparsely distributed.

By the analysis of this 2D array we obtain a prior model
of the room containing the number n of corners and their
approximate orientation (Sec. 5), resulting in a parametric
representation which varies in a constrained angular space
S(θ, γ) (Fig. 4 left). Hence we formalize our problem as
a global optimization on the measures Sm, solved with a
Levenberg-Marquardt algorithm, resulting in the final shape
of the room in real-world metric units. Since the method
is fully automatic and assumes the use of a mobile de-
vice (although it is applicable for single omnidirectional im-
ages coming form different sources) we can extend it to the
whole floor plan reconstruction through the inclusion of a
minimal information regarding the user movement direction
(Sec. 7).

4. Transform definition
We take as input an equirectangular image of the room,

i.e. a spherical image which has 360 degrees longitude and
180 degrees latitude field of view. We assume that the in-
put image is already aligned to the gravity vector and each
corner of the room is visible, conditions usually satisfied by
spheremaps generated with the aid of sensor fusion in mod-
ern mobile devices (e.g. Google Camera with Photo Sphere,
Autostitch [4]), and commonly adopted for the navigation
by systems like Google Street View. Since we assume that
the acquisition is done with a mobile device the height of
the observer’s eye is also known (easy to estimate with a
quick calibration step) as well as a simple tracking of the
user’s movement between rooms is available.

To classify the floor and the ceiling in the image we start
with an approach similar to [3]. A super-pixels based seg-
mentation method [7] is combined with a geometric reason-
ing classification [9], exploiting the texture homogeneity,
prevalent in indoor scenes, and labeling the top and bot-
tom parts of the image as ceiling and floor (blue and red

3
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Figure 2: Left: mapping transferring the points between the ceiling and the floor (real case simplified for the exposition). Center: each
point in the (spheremap) image can be mapped in a 3D space through the transform 5. From each point (θ, γ) in the image we can generate
a 3D point when its height h is known. Right: boundary points extracted during the initial classification step. The points marked in red are
strong correspondences.

zones respectively in Fig. 2 left). According with this clas-
sification the floor is related to the ceiling through a pla-
nar homology Hc→f (Fig. 2 left), which can be recovered
given the image location of any pair (x̄c, x̄f ) of correspond-
ing ceiling/floor points [8]. This approach is very effective
when features are lines but less reliable in many real-world
case of indoor spherical omnidirectional images, therefore
in [3] the label assignment is enforced introducing 3D/MVS
information, externally calculated from the original sparse
images set and introducing a priori knowledge of the height
of the observed walls. From this first classification (ceiling,
walls, floor) we obtain two sets of pixels I(x̄c) and I(x̄f )
(for the ceiling and for the floor), which have high probabil-
ity of containing the floor-wall and ceiling-wall intersection
respectively.

Like in [8], we do not have a priori any such pair
(x̄c, x̄f ). Instead of trying to infer it from additional 3D
information or imposing the Manhattan World assumption,
we introduce a specialized Transform Gh and room model
to solve our problem.

The origin of this room’s model is the position of the
ideal observer, where the abscissa and ordinate of the im-
age represent respectively the azimuth θ and the tilt γ of
the view’s direction. We assume for the rest of the explana-
tion that the mapping between angles and pixels is implicit,
since this transformation in a equirectangular image is sup-
posed to be linear. Each point in the (spheremap) image can
be mapped in a 3D space through the following spherical
coordinates (see Fig. 2 center)

G(r, θ, ϕ) =


x = r ∗ sinϕ ∗ cos θ

y = r ∗ sinϕ ∗ sin θ

z = r ∗ cosϕ

(1)

We can appropriately convert with respect to the direc-
tion viewing (Fig. 2 center) through the following relations

sinϕ = cos γ
cosϕ = sin γ
r = d/ cos γ

(2)

If we introduce the assumption that the height z is a constant
value h for all points the distance d of the observer to the
wall is

d =
h

tan γ
(3)

and we also have:

z = h = r ∗ sin γ ⇒ r = h/ sin γ (4)

and substituting for r in Equation 1 we obtain the function:

Gh(θ, γ) =


x = h/ tan γ ∗ cos θ

y = h/ tan γ ∗ sin θ

z = h

(5)

The function Gh maps all the points of the equirectangular
image in 3D space as if their height was h. We will use Gh

with one of the values:

h =

{
−he floor

hw − he ceiling
(6)

where he is the height of the center of the omnidirectional
image (the eye of the observer) and hw the height of the
wall. If we knew the wall height h all the pixels in I(x̄c) and
I(x̄f ) would be mapped to their actual 3D position. This
observation leads us to a test for assessing the likelihood
that a given value h is indeed the actual wall height.

For each image column j, we apply the function Gh to
the pixels belonging to I(x̄c) and I(x̄f ) (that is, I(x̄c)|j
and I(x̄f )|j). If h is the actual wall height, than the XY
coordinates of the points on the edges on the wall (both
on the floor and on the ceiling) should be the same, since
the wall is assumed to be vertical. Unfortunately the initial
classification, as it can be seen in Fig. 2 right (cyan pixels),
also returns many pixels in other positions, like the furniture
edges. However, we rely on the fact that most likely I(x̄c)
and I(x̄f ) do contain points on the wall.

For each couple of pixels (cj , fj) ∈ I(x̄c)|j × I(x̄f )|j
we define:

4
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dh(cj , fj) = distXY (Gh(cj), Gh(fj)) (7)

where distXY is the Euclidean distance on the XY plane.
Note that dh(cj , fj) is small in two cases: either because h
is near the actual value and both the pixels on the wall (or in
the unlikely case that the edge detector returned false posi-
tives on the floor and the ceiling at the same XY position),
or h is not near the actual value and the couple is just a false
positive. Therefore we consider the most likely h the one
the maximizes the following term:

d(h) =
∑
∀j

count{(cj , fj) | dh(cj , fj) < τ} (8)

where τ is a metric threshold that we set to 5cm in our ex-
periments.

The optimization process could be carried out in more
than one way, for example with a RANSAC approach or
even by gradient descent search. However, since we re-
duced our problem to the only one variable h, the search
space can reasonably be limited between 2m and 10m,
and we can afford to perform a voting scheme, iterating
h over the interval with 2mm step, which is below the
tolerance on indoor constructions, so avoiding even slim
chances to run into a local minimum. When h is found we
select the subset of couples (x̂c(θ, γ), x̂f (θ, γ)) for which
dh(cj , fj) < τ and mark them as strong correspondences
(in red in Fig. 2 right). These couples identify a set of image
points Sm(θ, γ) that with an high likelihood belong to the
room boundaries. We will exploit them in final reconstruc-
tion step, in conjunction with the room parametric model
described below.

5. Parametric model
Most of the studies dealing with spherical panoramic im-

ages are focused on catadioptric view [2], but many the-
orems can be applied to all omnidirectional images with
practical implications. In the spherical panoramic imaging,
a line P ′Q′ in the world is projected onto the unit sphere as

an arc segment
_

PQ on a great circle. The arc segment on
a great circle forms a curve segment in an omnidirectional
image [11].

Starting from these assumptions we apply the Transform
Gh(θ, γ) of Eq. 5 to the Canny edge map, projecting points
from polar coordinates ∈ S(θ, γ) to R2 through a projective
plane πxy .

Projected points form an accumulator array Π(x, y) (see
Fig.3 left), whose parametric space is quantized in metric
dimensions (i.e. centimeters). Although not all values have
a real 3D correspondence, the points having a high likeli-
hood of being on the real room’s boundaries tend to accu-
mulate their projection in the 2D array Π(x, y). Further-

Figure 3: Left: Simplified illustration of the transform defined
by Eq. 5. Projected data contains both noise, a sheaf of 2D lines
(green) with center in the origin of the room and a footprint of the
room shape (blue lines). Right: Detail (scaled and enhanced for
printing) of the accumulator peaks.

more bringing the problem in a 2D Cartesian space greatly
simplifies the detection of shapes, as geometric lines (conics
in image space) become lines in the projective plane πxy .

Since Π(x, y) can be considered also as a 2D image, we
can easily highlight a basic model of the room shape with
the Hough transform for circles and lines. Indeed, as it can
be seen in Fig. 3 left (green lines), vertical edges in the 3D
scene tend to become a sheaf of lines Γ in R2 with cen-
ter in the origin of the room, whereas the ceiling and floor
boundaries accumulate their projection in same or adjacent
positions, describing the set of segments Λ in R2. Once we
have removed sparse points from the image of Π(x, y), we
choose the intersections of segments Λ that intersect or have
a small distance from a line ∈ Γ, since we expect many of
these radial lines to intersect the shape corners. As result
we obtain a subset of segments Λint ⊂ Λ in R2 whose in-
tersections {p1, · · · , pn} with pi ∈ R2 correspond to the n
corners of a reasonable model of the room shape (see Fig. 3
right).

From the intersections {p1, · · · , pn} we estimate their
approximate positions in polar coordinates ∈ S(d, θ) (see
Fig. 4 left). Since d depends on γ and h according to Eq. 3,
once we choose one of the two boundary planes z = h with
its related h from Eq. 6, each boundary (ceiling or floor)
of the room can be represented in equirectangular coordi-
nates as a set of corners {c1(θ1, γ1), · · · , cn(θn, γn)} with
ci(θi, γi) ∈ S(θ, γ) (see Fig. 4 top-left) .

6. Room shape extraction

To obtain the reconstruction of the real room layout,
we adopt a model fitting approach to the measurements
Sm(θ, γ) (see Sec. 4) exploiting the parametric model
of Sec. 5. Given the m measurements Sm(θ, γ) =
{x̂s1 , . . . , x̂sm} we generate their corresponding Tm(θ, γ)
values related to the room parametric model. As previously
described in Sec. 4 the set Sm(θ, γ) is composed by cou-
ples of points (x̂cj (θ, γ), x̂fj (θ, γ)) (related respectively to
positions in the ceiling and the floor) sharing the same θj

5
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Figure 4: Left:we generate all possible shapes from a set of an-
gles varying in an opportune range (e.g. ±δ). From the model
values in angular space (bottom) we sample the corresponding Tm

samples to be compared with the Sm measurements. Right:final
reconstruction of the room in metric units.

value. For each point in Sm(θ, γ) we generate a point in
our parametric model, acquiring its corresponding distance
value d through ray casting and converting its 3D coordi-
nates in angular coordinated through the inverse of Eq. 5.

We carry out a global optimization of the Tm(θ, γ) =
{x̂t1 , . . . , x̂tm} samples generated varying the 2n param-
eters of the model, to estimate the set of parameters
R(θ1, γ1, · · · , θn, γn) which describe the real shape of the
room. The problem can be formalized as a non-linear
least squares problem (Eq. 9), solvable with a Levenberg-
Marquardt algorithm (LMA).

R(θ1, γ1, · · · , θn, γn) = argmin

m∑
j=1

‖x̂sj − x̂tj‖2 (9)

Mathematically it is not uncommon to find the parame-
ters wandering around near the minimum in a flat valley of
complicated topology, since the minimum is at best only a
statistical estimate of R(θ1, γ1, · · · , θn, γn).

In our case since all parameters are represented by an-
gles and the initial values are strictly bounded to a closed
polygon and a short angular range, a very limited number
of iterations is always sufficient to ensure convergence to
the optimal solution (Fig. 4 right). For further implementa-
tion details, see Sec. 8.

7. Floor Plan Generation

The method described above can be iterated to map and
reconstruct a multi-room structure with a minimal track-
ing of the user movements through the mobile device IMU
(see Sec. 8 for details). We track the approximative direc-
tion of the user with respect to the Magnetic North when

he/she moves from a room to another, as well as we spa-
tially reference each spheremap during the acquisition (i.e.
the direction of image center is known w.r.t. the Magnetic
North). Once we have roughly individuate in the GUI the
exit and entrance doors in the omnidirectional images, we
then identify doors in the images with conventional CV
methods (vline/rect detection), without the need to identify
the complete user path (see Fig. 5). In order to obtain com-
pact floor-plans and a better alignment between walls, we
check for close corners between adjacent rooms (Fig. 5 yel-
low dots) and we slightly tune the door positions to mini-
mize the distance between these corners. The interconnec-
tions between matching doors are stored in a graph of the
scene, then for each matching door between two adjacent
rooms rj to room rj+1 we calculate the 2D affine transform
Mj,j+1 representing the transform from the coordinates of
room rj+1 to room rj .

Figure 5: We align each other room to an initial r0, calculating
the path to reach the starting room as a set of transforms represent-
ing the passages encountered while moving from the aligned room
to r0.

For each aligned room we calculate the path to a room
r0 chosen as origin of the floor plan as a set of trans-
forms representing the passages encountered to reach r0
and the whole transformation to the origin room coordi-
nates (Fig. 5). Since each room is already scaled into the
same metric coordinates the final result of the entire proce-
dure is a floor plan automatically aligned and scaled as well,
without manual editing or intervention.

8. Results
Data acquisition. To demonstrate the effectiveness and
accuracy of our method, we implemented a minimal An-
droid application (4.4 or higher compatible) capturing a
multi-room indoor scene. This application keeps track of
user movements between rooms and acquires the sphere-
map of each environment, in addition it estimates the height
of the ideal eye (see model Fig. 2 right) with respect to the
floor through a simple calibration at known distance. Al-
though different solutions are available to capture the spher-
ical omnidirectional images, we choose to use the Google
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Scene Features Area error Wall length error Wall height error Corner angle error Editing time
Name Area [m2] Np MP Ours MP Ours MP Ours MP Ours MagicPlan

Office H1 720 10 2.95% 1.78% 35 cm 15 cm 2.0 cm 1.2 cm 0.8 deg 0.8 deg 26m32s
Building B2 875 25 2.50% 1.54% 30 cm 7 cm 6.0 cm 1.5 cm 1.5 deg 1.5 deg 42m18s
Commercial 220 6 2.30% 1.82% 25 cm 8 cm 12.0 cm 2.7 cm 1.5 deg 1.0 deg 28m05s

Palace 183 3 16.86% 0.20% 94 cm 5 cm 45.0 cm 1.3 cm 1.8 deg 0.5 deg 15m08s
House 1 55 5 21.48% 2.10% 120 cm 16 cm 15.0 cm 4.7 cm 13.7 deg 1.2 deg 25m48s
House 2 64 7 28.05% 1.67% 85 cm 8 cm 18.0 cm 3.5 cm 15.0 deg 0.5 deg 32m25s
House 3 170 8 25.10% 2.06% 115 cm 15 cm 20.0 cm 4.0 cm 18.0 deg 1.5 deg 29m12s

Table 1: Comparison vs. ground truth and other methods. We indicate the floor area and the number Np of input panorama images/rooms.
We show the comparison between our method and MagicPlan (MP) in terms of area error, wall length and wall height maximum error
encountered. At last we indicate the additional editing time needed by MagicPlan to achieve a result comparable to ground truth.

Camera and its related Photo Sphere module to make the re-
sults easily replicable. Through this application we save the
floor plan as a scene graph of interconnected rooms, stor-
ing for each room the following components: an equirect-
angular image covering a view of 360 × 180 degrees of
the room, the direction with respect to the Magnetic North
of the image center, the direction in the spheremap of the
door to the previous room and the direction of the door to
the next room. Comparing these directions the application
automatically calculates and stores the interconnection be-
tween rooms and the path between them. However our tech-
nique has been tested on a variety of single rooms acquired
both with the same system described above and from more
general sources to facilitate the comparison with other ap-
proaches.
Implementation. The method is implemented on Android
based on free available tools. The first segmentation and
classification step (Sec. 4) is implemented through OpenCV
1 similarly to prior work [7, 3]. OpenCV has been employed
also for all the standard operations on 2D images (using
C++ and Android calls).

Figure 6: Apartment with 7 rooms (Tab. 1 House2). On the left
the blueprint assumed as ground-truth with its real measures indi-
cated by the designer. On the right our reconstruction.

Evaluation. We present in Tab. 1 a summary of the re-
sults obtained for indoor structures whose real measures are
known, acquired through the mobile Android application
described above. We also present omnidirectional images

1http://www.opencv.org

Figure 7: South wing of an ancient palace (reference removed for
blind review - Tab. 1 Palace). On the left the floor plan assumed
as ground-truth with its real measures manually acquired. On the
right our reconstruction.

available on Internet and already studied in other single im-
age approaches alternative to ours, to compare the results.
Since the goal of the method is the metric reconstruction
rather than obtaining high accuracy in texture-mapping, the
typical Pixel Classification Error (percentage of pixels that
disagree with ground-truth label) is impracticable to eval-
uate the accuracy of prediction, neither a direct compari-
son with state-of-the-art methods [10] employing 3D/MVS
data. We choose instead to adopt as ground-truth the real
world dimensions of the indoor structures, demonstrating
the accuracy of our method according to metric units. In
Tab. 1 we compare ground truth, our method, and the latest
version of MagicPlan, which integrates some of the features
proposed in [26, 24]. We have a non-negligible increase in
performance in Manhattan World environments, with simi-
lar results for wall lengths, heights and angles), and very im-
portant improvements for more general environments (e.g.,
area errors of 0.2-2.1% vs. 16.9%-28.0%, and similarly for
linear measures and angles). In addition, MagicPlan (and
Yang et al. [36]) require extra editing steps, taking between
few seconds to over 30min. In Fig. 6 we show the recon-
struction of a complete multi-room environment (House 2
of Tab. 1), with several Non-Manhattan World walls. As-
suming as ground-truth the blueprint, slight differences in
the layout are due to the presence of balconies and a differ-
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Figure 8: Room from the Palace dataset. We see in detail (green points) some of the strong couples employed.

Figure 9: Chateau de Sermaise, France, courtesy by Flickr. omnidirectional image presented for comparison with other methods. The
presented result is automatically obtained with our method in 5.5 seconds of processing. Yang et al. [36] obtain a comparable result on the
same dataset by manual modeling in 71 seconds.

ent furnishing of the bathroom and the kitchen compared to
the initial project. In Fig. 7 our method successfully faces
the reconstruction of a Non-Manhattan world environment,
as in the private chapel and in the octagonal state room.
In Fig. 8 we present a detail from the Palace dataset ac-
quired with our mobile system. Differently to other cases
presented the smoothed ceiling edges make hard to individ-
uate the real boundary from the image. However the method
correctly recognizes as ceiling boundary the upper extrem-
ities of the vertical walls, returning an accurate metric re-
construction (the estimated height of the walls is 460 cm)
at the cost of a less accurate texture mapping. In Fig. 9
we compare our method with [36]. Our system returns a
metric reconstruction of the environment automatically in
about 5 seconds, in contrast a comparable result is obtained
by Yang et al. [36] in 71 seconds through manual model-
ing. Although no data is available from mobile sensors in
this case, assuming an average camera height of 165 cm,
we estimated a reasonable height of the ceiling of about 5
meters. Since not all corners are visible in the image our
system recovers a fitting model with 8 corners (green dots),
finding anyway the best closed polygon which represents
the shape, avoiding this type of failure case. A second por-
tion of the scene environment with different ceiling height
is also visible in the right part of the image and correctly
classified by the system as a different room. Contextually
we notice as that our method is impracticable in presence
of curved walls or if the ceiling is supported by arches, as
showed in the failure case illustrated in Fig. 10.

Figure 10: Failure case: room with the ceiling supported by
arches. Although the walls boundaries looks like conics in the
spheremap, as they are like projections of lines, the transform re-
veals their geometry, resulting in a failure of the model detection.

9. Conclusions

We presented a very light-weight method to rapidly re-
cover the shape of a many typical indoor environments. Our
design exploits the features of modern mobile devices, such
as sensors fusion and capability to generate high-quality
omnidirectional images, providing a full pipeline to map
and reconstruct a surrounding indoor environment despite
their low-computational power. Since the approach is not
constrained by a Manhattan World assumption and the prior
model is defined run-time, the method can be extended to
sloped ceiling, for example with an appropriate implemen-
tation of the voting scheme. A straightforward improve-
ment can be the use of multiple omnidirectional images for
each room, to cover those cases where not all the perimeter
can be seen from a single point. This can be done for exam-
ple by combining our method with real-time approaches for
fisheye image matching [15].
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