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1. INTRODUCTION

In recent years, modeling packages based on virtual sculpting are
becoming more and more popular, especially in the entertainment
industry: ZBrush [Pixologic 2007] was the first program to adopt
such a paradigm, soon followed by other systems such as MudBox
[Autodesk 2007] and 3D Coat [Pilgway 2009]. For free-form shapes,
virtual sculpting is more flexible, easier and more intuitive than clas-
sical modeling with NURBS or direct polygon editing. However,
virtual sculpting systems produce irregular meshes, just like scan-
ning systems, while target models for the modeling and animation
pipeline are most often surfaces defined upon a quad-based con-
trol mesh (e.g., NURBS, subdivision surfaces). The connectivity of
the control mesh, the alignment of mesh elements, as well as the
placement of its singularities are deciding factors whether a mesh is
usable for subsequent processing.

Converting an unstructured mesh into a more regular and struc-
tured model is a challenging problem, which is known under the
name of retopology among practitioners, and remeshing in the geom-
etry processing literature. In spite of many attempts to automate this
task [Bommes et al. 2013], there still exists no satisfactory method
for practical applications: some methods can convert an unstructured
triangle meshes into a quad or quad-dominant mesh, but the result
does not capture the high-level features required for editing, defor-
mation, or animation. On the other hand, modeling systems provide
rudimental tools, requiring substantial manual intervention from
an experienced user, to convert the resulting unstructured meshes
into more regular and structured models: in this case, an acquired or
sculpted object most often is used merely as a guide for the artist to
create a new, structured shape from scratch, often consuming more
time than the actual modeling task.

In contrast, more traditional CAD approaches allow an artist to
design an object through shape refinement, usually starting at a
block and proceeding through subdivision, extrusion and stitching
operations, which are complemented with local mesh editing during
the finer stages of design. This process is certainly more difficult
and tedious than virtual sculpting, but it directly produces a quad
control mesh reflecting the intrinsic object structure.

We propose an automatic method that mimics the refinement-
and-extrusion approach to recover a coarse quad layout following
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Fig. 1. We start at an input object and we extract its line skeleton (a);
we place a subdivided box at each branching node of the skeleton (b); we
produce a “fattened skeleton” by extruding tubes with quadrangular section
along branches (c); we project this mesh onto the input surface to obtain a
coarse quad layout (d).

the overall structure of an object. We address shapes whose main
morphological structure can be captured by a curve-skeleton. This
class is quite wide and of high practical utility: it includes all the
shapes featuring body and limbs, like those used for typical virtual
characters (e.g., all anthropomorphic creatures, and most animals,
real or imaginary alike), as well as several mechanical objects, plants,
some anatomical structures, etc.

The pipeline of our method is depicted in Figure 1. Starting at
a skeleton extracted from an irregular surface mesh with an off-
the-shelf method, we automatically extract a representation of the
object made of branching boxes and “tubes” extruded from their
faces along skeleton branches. This assembly of boxes and tubes
provides the topology of a coarse quad layout with edges aligned
along limbs. A parametrization of the input shape on such quad
layout provides a base mesh to model the object at hand. The quad
layout we produce is ready for further refinement without the need
for extensive retopology.

The skeleton is usually not able to capture fine detail like, for
instance, the facial features of a head, or the scales of a dragon. How-
ever, the modeling of fine detail is beyond the scope of this work,
and complementary to it: our coarse quad layout in fact provides a
basis for several possible tasks in the advanced stages of modeling.

1.1 Contribution

Our main contribution is the derivation of a pure quad layout from
a triangle mesh and its curve skeleton. This is performed with an
automatic method that is fast, one-click and does not require param-
eter setting. It can be applied to objects of any genus, provided that
the curve-skeleton is accurate enough to represent its structure. We
also support interactive techniques that allow the user to change the

structure of the quad layout on-the-fly, by correcting the choices of
the automatic system. We present applications to semi-regular quad
meshing and UV-mapping.

2. RELATED WORK

Several automatic methods for quad meshing have been proposed
during the last decade. See [Bommes et al. 2013] for a recent sur-
vey. Such methods are successful in producing dense quad meshes
aligned to curvature or shape features, but they fail to address other
quality criteria that are relevant to the production pipeline. In fact,
they do not provide enough control on the placement of singularities
and the meshes they produce seldom embed the object structure.
Some automatic methods have been proposed to produce a semi-
regular coarse quad layout, either as a post-processing [Bommes
et al. 2011; Tarini et al. 2011], or directly [Bommes et al. 2013;
Campen et al. 2012]. All these methods are computationally expen-
sive, and they need a heavy manual tweaking of the input parameters
that most often have no intuitive relation to user desiderata.

Our work is most related to proposals in [Bærentzen et al. 2012;
Bærentzen et al. 2014; Ji et al. 2010; Wu and Liu 2012; Zhang et al.
2007]. In such works, the surface of an object is seen as composed
of: tubular structures, corresponding to branches of the curve skele-
ton; caps, corresponding to leaf nodes; and connecting structures,
corresponding to branching nodes. Meshing tubular structures and
caps is relatively straightforward, while connecting structures is
the real challenge. In [Zhang et al. 2007], connecting structures are
taken from a library of templates, depending on the underlying con-
nectivity of the skeleton, while tubes are generated independently
about branches. In [Ji et al. 2010], tubes are extruded first, while
connecting structures are obtained from the convex hull of tube
boundaries. In [Wu and Liu 2012], tubes are also built first, then
a smooth cross field is imposed on the remaining portion of the
surface and a quad mesh is laid over it by using an optimization
method similar to [Ray et al. 2008]. In [Bærentzen et al. 2012],
polyhedra are built first at branching nodes, then tubular structures
are extruded from loops of edges of such polyhedra. In [Bærentzen
et al. 2014] tubes are grown following a harmonic field over the
surface, which is computed starting at user-defined poles: polar caps
are built around poles and connections arise at meeting boundaries
of tubes themselves. In this latter work, the skeleton is not taken as
input, but it is rather generated upon the tubular structure resulting
from user-specified poles. Meshes obtained from [Bærentzen et al.
2012; Bærentzen et al. 2014; Ji et al. 2010] are quad-dominant and
tend to introduce irregular vertices of high valence at connecting
structures; undesirable cluttering of many small faces also occurs
around polar patches. The method of [Zhang et al. 2007] as well
introduces irregular vertices of high valence. The method of [Wu
and Liu 2012] provides no control on the placement of singularities
and is just suitable for generating fine meshes. None of these works
is explicitly addressing the problem of producing a coarse quad
layout.

Mapping a 3D shape to a polycube [Tarini et al. 2004] is another
way of generating a coarse quad layout. In fact, a pure quad subdi-
vision can be trivially computed in the polycube domain, resulting
in a mesh that naturally embeds a layout reflecting its topological
structure. Extremely coarse layouts can be computed by carefully
rounding polycube corners to integer locations. However, this op-
eration is non trivial, as rounding corners may introduce both topo-
logical issues and additional distortion in the mapping. State of the
art algorithms for polycube computation [Huang et al. 2014; Livesu
et al. 2013] do not specifically address this problem and therefore
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they tend to produce overly complex quad layouts (see Fig. 12, third
and fourth row).

A closely connected and extensively studied problem is the con-
struction of a surface parameterization defined over a quad-based
domain. In [Madaras and Ďurikovič 2012] this task has been ap-
proached by decomposing the initial surface into tubular shapes,
following a skeleton structure. The resulting parameterization, how-
ever, is designed for texture mapping and could not be easily used
for remeshing.

Another recent trend concerns user-assisted techniques. In [Peng
et al. 2011], local operators are provided to edit a quad mesh by
moving around paired configurations of singularities. In [Peng
et al. 2014; Takayama et al. 2013; Takayama et al. 2014] poly-
gons sketched on the surface can be filled with patterns generated
automatically on the basis of simple constraints provided by the user.
In [Campen and Kobbelt 2014a] strips of edges are interactively
laid on the surface along directions chosen by the system, allowing
the user to quickly sketch quad layouts. These interactive methods
can be seen as orthogonal and complementary with respect to our
contribution, as they can be used to refine the model once a coarse
quad layout has been automatically generated.

A review of the literature on curve-skeletons is beyond the scope
of this paper, a description of the problem and of the various methods
at the state of the art can be found in [Livesu and Scateni 2013;
Tagliasacchi et al. 2012] and references therein.

3. METHOD

As discussed in Section 2, our objects consist of “tubes” meeting at
branching elements. We aim at a pure quad layout that is aligned
with tubes, so we can expect the meshing endowed by such layout
to be fully regular along tubes, while singularities will appear at
branching elements. In order to set the structure of such branching
elements, we rely on the following observations from the common
practice in interactive modeling of quad meshes:

—Most irregular vertices should have valence either 3 or 5; vertices
with valence 6 can be useful along symmetry axes (as the collapse
of two coincident vertices of valence 5), while higher valences
are seldom used;

—Tubes with a quadrangular section are the most natural choice,
since they can be extruded by cut-opening quad faces; such an
extrusion introduces just four irregular vertices of valence 5;

—The basic modeling primitive is a hexahedral box, it provides a
mesh covering a genus zero volume with a minimal number of
irregular vertices (eight with valence 3), and it can be arbitrarily
subdivided by “gridding” its faces without introducing further
irregular vertices; note that the possibility to subdivide a box
implies that an arbitrarily high number of tubes can be extruded
from its faces.

We take as input a triangle mesh together with its curve-skeleton.
The curve-skeleton can be computed with standard methods or it
can be modeled interactively, as in the definition of an animation
rig, and it must endow the overall structure of the object, which will
be modeled by our coarse quad layout (Subsection 3.1). As typical
in virtual sculpting, our initial primitives for modeling are subdi-
vided hexahedral blocks, which are assigned to branching nodes
of the curve-skeleton. The correct orientation of such blocks with
respect to their incoming branches, which is crucial in defining the
topology of the final quad layout, is set by resolving a local opti-
mization problem (Subsection 3.2). We extrude other blocks along
the branches, thus obtaining a “fattened skeleton” with quadrilateral
faces (Subsection 3.3). This initial mesh contains T-junctions, which

Fig. 2. An axis-aligned cube has all the three branches of the skeleton
piercing the front face (left). Such a configuration would require splitting the
front face in three facets. After reorienting it, the three branches pierce three
different faces forming a “tripod” configuration, with no further splitting
necessary (right).

are removed with a minimal subdivision by resolving an Integer
Linear Programming (ILP) problem (Subsection 3.4). Next, we pa-
rameterize the input surface onto the surface of our base mesh to
extract a quad layout (Subsection 3.5). All the previous parts are
fully automatic, one-click, fast and do not require any parameter
setting. Optionally, some choices can be modified or integrated by
user interaction (Subsection 3.6).

3.1 Input

The input of our method is an object that can be roughly approxi-
mated by an assembly of generalized cones, that is surfaces that are
swept out by moving a cross-section of smoothly varying size along
an axis [Binford 1971; Marr 1980]. The high-level morphology of
such an object can be successfully described by a curve-skeleton.
Knowing also the diameters of medial balls tangent to the surface, or
a complete mapping of the surface to its curve-skeleton, may allow
for a more or less accurate reconstruction of the original surface,
but this is not a stringent input requirement. In our experiments, we
have employed different algorithms for extracting a skeleton, such
as [Dey and Sun 2006; Livesu et al. 2012; Tagliasacchi et al. 2012],
as well as manually designed skeletons (see Section 5).

For the rest of this paper, we will assume our input to be a triangle
meshM together with its curve-skeleton, represented as a graph
KM, where each of its nodes has a position in 3D space. We classify
the nodes of KM as: Joint nodes (Jn) that have two incident arcs;
End nodes (En) that have only one incident arc; and Branching
nodes (Bn) that have more than two incident arcs.

3.2 Setting branching elements

We mimic the interactive modeling approach by subdivision-and-
extrusion, by placing a skeleton-aware hexahedral box at each Bn,
and allowing faces of such boxes to be possibly subdivided into
facets in order to support the extrusion of an arbitrary number of
tubes.

3.2.1 Box alignment. Branching nodes encode the way differ-
ent tubular structures are connected. Typical, but not exhaustive,
examples for three branches meeting to-
gether are T- and Y-branchings, and
“tripods” (formed by branches that are
nearly mutually orthogonal). Such configu-
rations are easy to realize with cubic joints
(see inset). Note that in Y-branching the
upper branches pierce the same face of the
Bn box, thus requiring this face to be split
into two facets; such a split shall propagate
along the complex to avoid T-junctions.

For branching nodes of higher degree,
the combinatorics of configurations may become rather complex, so
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we face the problem of selecting the most suitable configuration in
a general way. We orient boxes at Bn’s trying to keep their faces as
orthogonal as possible with respect to the directions of incoming
branches (see Fig. 2).

In order to do this, we resolve the following optimization problem
independently at each Bn. Given the branching node ni and the set
of ki directions of its incident arcs {di

1, . . . ,d
i
ki
}, we search for the

orthonormal basis UiViWi that minimizes the function:

f(Ui, Vi,Wi) =

ki∑
j=1

∣∣di
j · Ui

∣∣+ ∣∣di
j · Vi

∣∣+ ∣∣di
j ·Wi

∣∣
The Bn will then be a box axis-aligned to basis UiViWi. Note

that each term of the summation achieves its minima when one of
the three coordinate axes is aligned with the branch, and its maxima
when the branch stabs any corner of the box. The summation acts as
a trade-off for the (mis-)alignment of the different branches to the
basis.

As can be noticed f contains absolute values, hence is not C1

continuous. To improve the stability of the solution, we follow an
approach similar to [Huang et al. 2014], minimizing the following
function for ε→ 0 [El-Attar et al. 1979]:

fε(Ui, Vi,Wi) = (1)

=

ki∑
j=1

√(
di
j · Ui

)2
+ ε+

√(
di
j · Vi

)2
+ ε+

√(
di
j ·Wi

)2
+ ε

We encode this minimization as a non-linear constrained problem,
by imposing that Ui, Vi and Wi are unit-length and mutually or-
thogonal, and we resolve it with Ipopt [Wächter and Biegler 2006].
We initialize the basis UiViWi by computing the PCA of the set
of directions {di

1, . . . ,d
i
ki
}. We start resolving the problem with

ε = 0.5, and we take each solution as warm start for the next itera-
tion halving the value of ε; four iterations are always sufficient for
our purposes.

3.2.2 Initial box subdivision. We now have a set of oriented
boxes associated to each Bn. Let Bi be the box associated to Bn
ni with k incident arcs. Each arc aik incident at ni is associated to
the face of Bi pierced by the branch containing aik . When more
than one arc are associated to the same face of Bi, we split that
face into facets following patterns allowing for tubular structures
corresponding to different arcs to be extruded independently. To do
this, we compute all the intersection points between a face f and its
incident branches of skeleton: if f has bf incident branches, we split
f into bf parallel rectangular facets. In order to decide the direction
in which f will be split, we project its intersection points to the two
cardinal directions parallel to the sides of f (in the UiViWi basis),
and we select the direction Xi on which such projection spans a
larger interval. Each facet of f is then assigned to its corresponding
incident branch. An example of split box is depicted in Fig. 3. Note
that the resulting tessellation of the cube can have T-junctions (i.e.,
the two half-edges of the same edge are not split in the same number
of portions); this issue is fixed later for the whole quad layout with
a global process (see Subsection 3.4).

3.3 Extruding tubes

The next step is to place, along the paths defined by the branches
of the skeleton, “tubes” with a quadrilateral section that connect
either Bn-Bn pairs, or Bn-En pairs, with a minimal torsion. To

Fig. 3. A box with three branches (ai1 , ai2 , and ai3 ) piercing its front
face, and two branches (ai4 and ai5 ) piercing its top face. The front face is
split into three facets along the Vi direction and the top face is split into two
facets along the Wi direction. The resulting mesh has T-junctions.

this aim, we associate a square ring to each Jn and we concatenate
such squares with longitudinal edges nearly parallel to the skeleton.
The square ring associated to each Jn lies in a transversal plane,
which is orthogonal to the tangent direction of the skeleton (trivially
estimated as the average direction of its two incident arcs) while its
rotation about the axis is set according to a Bishop frame [Bergou
et al. 2008].

3.3.1 Branching node to End node. For a Bn-En pair, we start
at the Bn end of the branch, removing the facet pierced by the
corresponding branch of skeleton, and extruding the tube along it.
We set a 2D reference frame aligned with the sides of the removed
facet; the Bishop frame is set at each point along the branch by
parallel transport of this initial frame along the branch, through all
Jn’s to the En (see [Bergou et al. 2008] for details). An open box
is placed centered at the En and oriented according to the direction
of the incident arc of skeleton and the Bishop frame. The tube is
assembled by joining corresponding corners of the rings in chains,
starting at the open facet of the Bn up to the open face of the En.
The orientation of the 2D frames at all Jn’s along the path, as well
as at the En, set the orientation of the rings about the branch, so
that no torsion occurs along it (see, e.g., the nose and the ears in
Figure 4).

3.3.2 Branching node to Branching node. For a Bn-Bn pair,
we set the Bishop frame as before, by fixing the reference frame
at one of the two ends. In general, there will be a mismatch be-
tween the orientation of the Bishop frame and the orientation of
the branching box at the other end, for an angle θ on the plane of
the frame. Such a mismatch induces a torsion on the tube that we
distribute by interpolating θ along the branch and rotating the rings
at intermediate Jn’s accordingly. This is easily done by arc-length

Fig. 4. If tubes are extruded along branches by using just the Bishop frame,
all torsion occurs in a single red block (left image); we interpolate torsion
along the neck, to minimize box-to-box torsion.
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parameterization along the branch (see the neck in Fig. 4 for an
example).

3.4 Conforming tessellation

The mesh built in the previous step is connected and watertight, but
in general it can have T-junctions, because some edges of the Bn’s
may have been subdivided differently at the two sides (Figure 5).

Previous approaches for T-junctions removal are able to generate
a conforming mesh at the cost of two linear equations per face,
imposing that opposite edges of the same face will be subdivided
in the same number of intervals [Bommes et al. 2010; Tong et al.
2006]. However, these formulations are not general enough as they
do not handle the case in which multiple faces are incident at both
sides of the same edge (Figure 5). We propose here an alternative
formulation that can handle such case and requires a remarkably
smaller number of unknowns.

Both Bns and Ens are essentially cubes arbitrarily oriented in the
space, therefore they naturally embed a 3D frame represented by
the three orientations of its edges. For each such node we set three
unknowns, representing the number of splits required along each
direction in order to achieve conformity.

Tubes are cylinders with a quadrilateral section. For each tube we
set two unknowns, representing the number of splits along the two
edge directions of its cross-section.

The total number of unknowns required by our system is therefore
3n+ 2m, with n being the number of branch nodes and end nodes,
and m the number of tubes. Note that this number relates to the
structure of the model not to the resolution of the mesh, as any tube
can be tessellated with an arbitrary number of quads along its length
without affecting the size of the problem we are going to solve.

Tubes are connected to nodes through a face, or a portion of
it. When a cube and a tube meet at a face they must agree on the
number of subdivisions of their edges along two directions. Let us
consider the example in Figure 5: the tubes t0, t1t,2 pierce the uv
face of the cube C. In order to achieve conformity C and t0, t1t,2
must agree on the number of subdivisions along the directions u and
v, generating four linear equations{

Cu = t0u = t1u = t2u
Cv = t0v + t1v + t2v

(2)

The face vw of C is pierced by the tubes t3, t4. In a similar manner,
to achieve conformity C and t3, t4 must agree on the number of
subdivisions along the directions v and w, generating three more
equations {

Cv = t3v + t4v
Cw = t3w = t4w

(3)

To produce a conforming mesh we therefore solve for the number of
subdivisions of each cube and each tube, generating a homogeneous
linear system AX = 0. As we are only interested in non-trivial
solutions that prescribe a positive number of subdivisions for each
element we add a further constraint X ≥ 1, where 1 is a vector
with all entries at 1 and the inequality is intended component-wise,
that is, each edge consists of at least one segment. We want to split
each edge into a minimal number of sub-edges while satisfying the
constraints above. This gives us the following ILP problem:

argmin1TX (4)
AX = 0

X ≥ 1

tu0

tv0
tv1

tv2

tv3

tv4

tw3
cw

cu

cv

u

v
w

v

wu

Fig. 5. We weld tubes on cubes in a conforming way (bottom) by imposing
that the number of splits of a cube along each direction matches with the
sum of the number of splits of each incident tube along the same direction.

We minimize the energy above by using [Gurobi Optimization
2013].

Note that our approach is inherently volumetric, in the sense
that the number of subdivisions we prescribe generates surface
meshes that can be trivially turned into full hexahedral meshes just
by gridding the interior of each tube and each cube.

3.4.1 Barriers. The problem as described above admits a feasi-
ble solution for any object of genus zero, i.e., whenever the curve-
skeleton is a tree. However, objects of higher genus may contain
configurations that do not admit a solution, as depicted in Figure 6.
These situations, called barriers, arise because of loops of con-
straints (corresponding to non-trivial cycles in the curve-skeleton)
that cannot be satisfied simultaneously.

In short, we locate barriers and we remove each of them by split-
ting the volumetric complex at some point along its corresponding
cycle, until the system becomes feasible. In the worst case, we split
all cycles and the complex becomes of genus zero, hence a feasible
solution is guaranteed. After a conforming complex is obtained, we
re-join each split by glueing corresponding ends at a common grid;
the mismatch between abutting ends generates lids on the surface of
the complex, introducing new irregular vertices (see Figure 6).

In more detail, we proceed as follows. We first detect cycles in
the graph having as nodes the feature points of the skeleton (leaves
and branching nodes) and as arcs the skeleton paths connecting
them. This is done at the cost of a depth-first traversal. Note that
there is a one-to-one match between arcs and tubes. Next, for each
such cycle c, we collect all the equations containing the variables
associated to its tubes. Let Ac be the sub-matrix of A composed
by these equations only. Then c is a barrier if and only if the ILP
restricted to constraints in Ac also does not admit a solution.

Barriers can be broken by splitting the variables corresponding to
cubes that appear along a cycle. Consider for instance the example in
Figure 6. It contains a single loop consisting of cube C and tube t1,
and it corresponds to the equations shown in the figure, which also
involve tube t2. We can always break the barrier by splitting vari-
ables Cu and Cw into C ′u, C

′′
u and C ′w, C

′′
w , respectively, generating

the new set of constraints as shown in the figure. After resolving
the ILP problem for the new variables, the cube is split according
to the larger value between each pair of solutions C ′∗, C

′′
∗ . The end

of the tubes corresponding to the equation that involves the other
variable are attached to the cube to cover a sub-grid of facets of the
subdivided cube. The other portion of the face of the cube is now on
the surface, tagged lid in Figure 6.

The cube at which a given barrier is broken can be selected either
automatically, or by the user; in our implementation, we arbitrarily
selected the cube with the least number of tubes incident to it. Note

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.



6 • F. Usai et al.

lid

lid

⇒ ⇒

Cu
Cw

Cv

t2w
t2u

t1u

t1u





C ′
u = t1u + t2u

C ′
w = t1w = t2w

C ′′
u = t1u

C ′′
w = t1w





Cu = t1u + t2u
Cu = t1u
Cw = t1w = t1w





C ′
u = 2 �= C ′′

u = 1
C ′

w = C ′′
w = 1

t1u = t2u = 1
t1w = t2w = 1

Fig. 6. The mesh on the left has barriers: constraints coming from the top
and the bottom faces of the cube cannot be satisfied at the same time; the
barrier is broken by splitting variables Cu and Cw corresponding to the
blue and green axes; two possible solutions ca be found, as depicted on the
center and right, which add a transversal facet (a lid) that introduces four
more irregular vertices: two of valence 3 (in red) and two of valence 5 (in
blue). At the bottom, we show the system of constraints that characterize
the barrier, the way it is modified by splitting variables and the resulting
solution: the equations in red show the mismatch between values assigned to
a split variable.

also that there are degrees of freedom in matching the split variables,
which can bring to different solutions, as shown in the figure. In our
implementation, we just take one such solution in a systematic way
(by setting a local reference system for each face of the cube and
selecting the sub-grid at its lower-left corner. Additional geometric
criteria could be used to select an optimal matching among all
possible solutions.

Note that barriers seldom occur in practice. In fact, most gener-
alized cylinders are of genus zero, and also higher genus objects
usually do not induce barriers.

3.5 Coarse quad layout and mapping

The conforming quad-mesh we obtained can be further coarsened
by removing all the edge loops that are transversal to the tubes. The
resulting quad-mesh Q bears the topology of the final pure quad
layout we want for the original meshM. To conclude our pipeline
we need to compute a parameterization of M over Q, that is, to
define a bijective mapping between the two. To do this we assign to
each vertex v ofM a position on Q, which is specified by an index
i of a quad qi ofQ and a pair of parametric coordinates (normalized
in [0, 1] × [0, 1]) inside qi. This per-vertex assignment implicitly
partitions M into quadrilateral regions, each corresponding to a
quad of Q. Edges of Q are implicitly mapped into arcs traced over
M, which separate the regions but are not, in general, composed
of edges ofM. Similarly, vertices of Q are implicitly mapped to
general positions overM, not necessarily vertices.

The final mapping is constructed in two phases: first we com-
pute a raw assignment by projecting Q ontoM, then we improve
the mapping by an interleaved iterative process of refinement and
resizing.

3.5.1 Initial mapping. The raw assignment does not need be
accurate: it can produce fold-overs, distortions, and suboptimal
positioning of region boundaries onM. We proceed as follows:

Skeleton “fattening”: an embedding of Q is obtained placing its
boxes centered at the nodes of the curve-skeleton, orienting them as
described in the previous sections, and sizing them according to the
radii of medial balls; in case we don’t have the radii of medial balls
available, their sizes are roughly estimated as the distance between

Fig. 7. Left-most: original meshM color-coded according to the quads
in Q(left). Then: examples of different assemblages of macro-regions. Tri-
angles ofM which span multiple macro-regions (which are frozen during
relaxation) are shown darkened.

each node of the skeleton and its closest point onM; this creates a
sort of polymerized “fattened skeleton” around the curve-skeleton.

Initial projection: each vertex of Q is projected toM along the
surface normal estimated on the fattened skeleton averaging neigh-
bouring faces; if projection fails, the closest point onM is selected.

Subdivision: each face qi of Q is iteratively subdivided using
the Catmull-Clark subdivision scheme, obtaining a corresponding
gridded sub-domain qi; at each iteration of the subdivision process,
newly created vertices are projected toM as in the previous step.

Back-projection: M is projected over each qi, and, thus, over Q,
using the same strategy as in the previous steps.

Finally we remove the edge loops along the tubular structure.
From now on the geometry ofQ is no longer relevant: in any further
processing, Q is considered only as a collection of 2D rectangles,
complete with adjacency information. In this sense our domain Q is
“abstract”, as defined in [Pietroni et al. 2010].

3.5.2 Refinement. The refinement phase optimizes the
parametrization in the interior of each region, as well as the
locations and shape of the arcs and the positioning of vertices of the
layout inM. It also solves the fold-overs potentially created in the
initial mapping. This phase closely follows the technique proposed
in the second part of [Tarini et al. 2011], that we recap here just
for completeness. Alternatives could be employed equally well, as
[Campen and Kobbelt 2014b].

The procedure consists of an iterative relaxation of the positions in
Q assigned to vertices ofM. At each iteration, Q is partitioned in a
number of “macro-regions”, each consisting of a small groups of ad-
jacent quads ofQ, having a disk-like topology (see Fig. 7): a macro-
region can consist of either the 1-ring of a vertex of Q(“vertex”
macro-region), or two quads of Q sharing an edge (“edge” macro-
region), or a single quad (“face” macro-region). Parametrization
inside each macro-region is optimized by means of Mean Value
parametrization [Floater 2003], while keeping boundary vertices
fixed. Specifically, we freeze in place all vertices of any triangle
not entirely falling inside a single macro-region. At the end of the
iteration, the macro-regions are disassembled back into the original
quads of Q. Note that relaxation may move a vertex of M to a
different quad of Q.

Different assemblies of macro-regions are used at each iteration
(see Fig. 7), so that each vertex v ofM eventually undergoes op-
timization (i.e., appears in the interior its macro-region). At every
iteration, the partition is constructed with a simple greedy algorithm:
we incrementally assemble quads into macro-regions until no quad
is left; for each vertex and each edge of Q, we keep track of the
last iteration at which that element underwent relaxation (i.e. was
not on the border of its macro-region); first we assemble “vertex”
macro-region, starting with the ones constructed around vertices
of Q which has been frozen on the border for the most iterations;
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Fig. 8. The automatic cube orientation is generating an unnatural torsion
(left). The user can pick the cube, select a rotation axis, and adjust it (right).

remaining quads are assembled into “edge” macro-regions, priori-
tizing with the same criterion; lastly, singled-out quads form “face”
macro-regions.

The relaxation performed in the interior of the macro-region also
serves the purpose of unfolding fold-overs which are potentially
present in the initial mapping: if necessary, this can be enforced in
the optimization system by adding linear constraints, after [Bommes
et al. 2013]. Nothing guarantees that every folded configuration will
fall entirely inside one macro-region in at least one partition (so that
it can be fixed), but in our experiments we never encountered any
failure case. If need arises, ad-hoc countermeasures could be easily
designed to forcefully assign the entire folded configuration (and its
neighboring vertices) to a single macro-region.

After [Khodakovsky et al. 2003], in “vertex” macro-region con-
structed around an irregular vertex of Q, quads are transformed
by means of an exponential mapping, in order to flatten them on a
plane. Although this mapping is perfectly conformal in the continu-
ous case, it can occasionally increase the conformal energy, or even
introduce new fold-overs, due to the discrete nature of the mesh;
this is a minor (and rare) technical difficulty which could always be
solved with a local and temporary refinement ofM ; more practical
countermeasures, which we employed, consist in freezing or rolling
back newly created folded triangles, and rolling back any relaxation
process which results in a global increase of conformal energy.

We stop the process as soon as the increase of the global confor-
mal energy does not exceed a predefined threshold. Each iteration
cannot decrease the total conformal energy, which is preserved by
all the mappings to and from macro-regions, thus guaranteeing
convergence.

3.5.3 Resizing. We employ an additional optimization, inter-
leaved with the above, to determine the relative sizes of the abstract
quads in Q. This will be useful later on to extract a semi-regular
quad mesh (see Section 4.1).

First, the ideal aspect ratio ri is found separately for each quad
qi, striving to minimize the total conformal energy of [Lévy et al.
2002]. This sub-problem is solved in closed form for each interior
triangle and area-averaged for each quad.

Next, we find a globally consistent assignments of the widths
and heights of all quads, which better satisfies the aspect ratios, up
to a global scale. Recall that, in our abstract domain, an adjacency
defined between two sides of a pair of quads implies the equality
of their lengths. We construct a system where each variable v1, vn
corresponds to either the width or the height of a quad, and we
reduce the set of variables with the above equalities. If a given quad
qi vw width and vh height, we would like vw/vh = ri, which we
rewrite as log vw − log vh = log ri. We solve the corresponding
overdetermined linear system in the least squares sense (with one
variable arbitrarily set to the unit) to recover the logs of all the
variables, and thus the widths and heights of each quad.

Fig. 9. Left: curve-skeleton for the Warrior dataset. Middle: the quad-layout
produced by our framework with automatic box orientation (Section 3.2.1).
Right: an alternative quad-layout produced by manually reorienting branch-
ing boxes, leveraging the user interaction so as to emphasize the symmetry
of the layout (Section 3.6.1).

3.6 User interaction

The whole pipeline described so far is fast enough to be executed
at interactive frame rate on meshes of moderately large size. This
allows an end-user to integrate our pipeline, which is otherwise
fully automatic, with optional interactions aimed to control the
choices taken by the system. Specifically, we designed three forms
of interaction.

3.6.1 Reorienting branching nodes. The user can select and re-
orient a single Bn to change the layout of boxes, hence the structure
of the coarse quad layout (see Fig. 8). In this way the output can
be made to comply to additional desiderata, like for example the
preservation of symmetry in the quad layout (see Fig. 9).

3.6.2 Adding branching nodes. By construction we consider
only Bn having at least three incident arcs. It can be useful, to
account for sharp variations of the shape to insert Bn with only
two exiting branches piercing two adjacent faces of the box. Re-
call that the skeleton captures the topology of the tubular parts
without taking into account bending. Therefore, a branch is al-
ways modeled, by default, with a regular sequence of boxes,
whose geometry is properly adjusted to follow the skeleton.

In some cases, is it convenient to break
the regularity by inserting a new Bn, as
depicted in the inset where the heel is
remeshed. This choice depends most of-
ten on semantics of the modeled object,
and, therefore, we leave to the user the

possibility to impose it. For instance, the trunk of an elephant is
probably always best modeled with a straight sequence of boxes,
no matter how sharply it bends, while an ankle of a human always
requires an L-joint, even if the foot is extended.

3.6.3 Retouching parameterization. The end user can retouch
the mapping during its optimization (Subsection 3.5), by con-
straining a vertex v of Q to be mapped over a specific position
p on the mesh, assuming that p is currently mapped on a quad
of Q which is adjacent to v. We express p as a triangle index
and barycentric coordinates inside it. To fulfill the constraint, we
force the image of p to be mapped to the center of the macro-
region built around v, in any subsequent optimization iteration
that is performed on that macro-region. This translates to a sim-
ple linear constraint which can be included in the optimization.
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Fig. 10. Examples of semi-regular quad meshes at arbitrary resolutions
that can be trivially extracted from our coarse quad layout (top-right); the
curve skeleton which served as input (top left).

Note that, in all other iterations, the trian-
gle containing v is already fixed on the
boundary. This interaction can be useful
for both the applications we devise for
our technique: to pin-point the exact loca-
tion of irregular vertices of a remeshing
(Subsection 4.1), or to get some control

over the locations of seams of a UV-mapping (Subsection 4.2).

4. APPLICATIONS

We present applications of our technique to semi-regular quad mesh-
ing and UV-mapping. Each of these applications requires further
processing, exploiting the structure of the pure quad layout that we
have built so far.

4.1 Semi-regular quad meshing

We generate a quad remeshing of the original mesh, having the
same set of irregular vertices of the corresponding quad layout, by
performing a regular sampling over the parametric domain Q. The
resolution is arbitrary and it is determined by a user-defined scaling
factor s: the widths and heights of Q, as computed in Section 3.5.3,
are scaled by s and then rounded to the nearest integer value.

The vertices of the remeshing mesh are placed at integer locations
of the parameterization. This is simply done traversing each face
ofM once, and producing all the vertices inside it with a raster-
ization approach. Such vertices are connected with a natural grid
connectivity.

By construction, produced remeshings are pure-quad, conforming,
and semi-regular (in the sense of [Bommes et al. 2013]). See Fig. 10
for an example.

4.2 UV-mapping

For texture mapping applications, the coarse quad layout directly
provides a parameterization domain for UV-mapping. The UV-
mapping can be computed equally well either for a quad remeshing
(as seen above), or for the original triangle meshM. In the latter

case, we need to split few triangles ofM in order to accommodate
the necessary seams.

The rectangles of Q must be packed inside the global texture
rectangle, by means of 2D translations of an integer number of
texels, plus 2D rotations by a multiple of π/4.

One can use a simple rectangle-packing heuristic, as at the top
left of Fig. 11. It is also possible to attach a few rectangles side
by side, when the corresponding quads in Q are adjacent, in order
to reduce the number of texture seams, as in the bottom left and
right part of Fig. 11. These tasks, which have a direct equivalent in
typical UV-mapping construction (either by artists or by automatic
approaches), are made easy by the extremely coarse nature of Q.

To choose which rectangle to attach, we adopt a simple heuristic.
First, we assign a measure of “importance” to each edge ofQ, where
the “important” edges are the ones which should not become seams.
In our experiments we have used the length, but any semantic-
based criterion can be easily embedded. Next, we incrementally
assemble rectangles into sets of “pieces”, joining them side by side.
We analyze each edge e once, in descending order of importance: if
the two rectangles incident at e belong to different pieces, we try to
join them, but we reject the operation if it causes any overlap in UV
space (note that a single join operation can merge several edges).
Finally, we resort to a simple packing of bounding rectangles of the
final pieces.

By construction, our UV-mappings are “griddable”: they have
texel grids aligned across chart boundaries, conferring to the tex-
ture mapping the ability to hide seams even in presence of bilinear
interpolation and MIP-mapping, as shown in [Ray et al. 2010].

5. RESULTS

We tested the method described on more than twenty different mod-
els, including different poses of the same shape. Some results are
summarized in Table I and Figures 1, 10, 11, 13, 14, and 15. Further
results are available in the supplemental material.

For all these models we were able to produce a coarse quad layout
during interactive sessions. The sessions took from less than one
minute for simplest models (e.g., the cactus), to few minutes for the
more complex ones, which needed a finer reorientation of the Bn’s.
In all cases, the automatic part of the processing and the feedback
after each user operation are almost immediate, up to the creation of
the fattened skeleton and coarse quad layout topology. This is also
demonstrated in the video available in the supplemental material.
The parametrization part can take a few seconds, depending on the
size of the input mesh, but this is needed just once, after the user
is satisfied with the topology of the quad layout. Parametrization
retouching is almost immediate and fully compatible with user
interaction, too.

Our coarse quad layouts, as well as any quad mesh obtained out
of them, have most irregular vertices with valence 3 or 5, seldom
with valence 6. In our experiments, we have also processed a few
objects of genus higher than zero and we never experienced the
presence of barriers.

It is worth to notice that the user does not need to set up any
parameter and that interaction is purely based on the appearance
of the base complex. In the last two columns of Table I we report
some summary information on the number of user actions needed
to compute the final results. A visual comparison between a layout
automatically computed by our system and a layout edited by the
user is given in Figure 9. Note that most models required either
one or no box reorientation and that almost all L-joints inserted by
box addition occurred at heels. These figures just give a hint on the
simplicity of the overall procedure we set up.
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Fig. 11. Examples of UV-mappings obtained from our coarse domains. Left: two alternative UV-mappings for the Cactus dataset, resulting from a trivial
packing of the abstract domain (top) and from with the simple packing heuristic described in Section 4.2 (bottom). Right: a more complex example, for the
Dinopet dataset. All demonstrative textures were manually painted by artists using standard software.

We used four different algorithms for the
computation of the curve-skeletons. Armadillo,
Cat, Cactus, Dinopet, Rocker Arm, Dinosaur,
Octopus, Horse and Guy were skeletonized us-
ing [Livesu et al. 2012]; Hand using [Livesu
and Scateni 2013]; Fertility and Elk using
[Tagliasacchi et al. 2012]; Vessel, Dragon, Cen-
taur, Big Buddy, Joker and Warrior using [Dey
and Sun 2006]. For [Tagliasacchi et al. 2012]
and [Dey and Sun 2006] whenever necessary
we manually merged nearby branching nodes
so as to achieve a one-to-one relation between
skeleton arcs and the logical components of the
3D shape (see inset aside) whereas [Livesu et al.
2012] and [Livesu and Scateni 2013] already

embed a heuristic for the automatic simplification of the skeleton.

5.1 Quad layout comparisons

We made extensive comparisons of our results with other methods
aimed at producing a pure quad layout from a mesh of triangles,
using the number of domains and the number of singularities as
a quality metric. Comparisons with two models used in all the
other works are shown in Table II and Fig. 12. Note that resuts from
[Livesu et al. 2013] and [Huang et al. 2014] have been produced with
the default parameters; parameter tuning might reduce the number
of domains, but any method restricted to polycube topologies is
likely to result in more domains than our method, on models with
a good skeleton. We provide further comparisons in the additional
material. Note that, even if our method is designed as a support for
animation, and thus mostly usable on humanoid or animal models,
it outperforms the state-of-the-art even on a mechanical model like
Rockerarm and a model with high genus like Fertility.

We report a separate comparison with quad layouts extracted from
the PAM models of [Bærentzen et al. 2014]. Such models are just
quad-dominant and have most irregular vertices of valence 6 or 8 at
branching structures and vertices of high valence at poles. For the
sake of comparison, we obtain a quad layout from a PAM as follows:
we first remove the stars of poles and we build one domain per
pole; then we extract domains from the remaining pure quad mesh

Table I. Summary of experiments. For each model we show: the
number of faces in the triangle mesh (rounded to thousands); the
number and type of skeleton’s nodes; the number of domains and
irregular vertices (valence 3, valence 5, valence 6 or more); the

interactive operations of the user for reorienting and adding Bn’s, if
any. The name of each model comes together with a reference to the

figure showing it.

Model kTri’s
Skel. nodes

Domains
Valence User inter.

(Bn,En,Jn) (3, 5, 6+) Reor. Add

Armadillo13 11 (7,18,50) 216 (72,48,8) 3 2
Big Buddy15 27 (4,11,66) 132 (44,24,6) – 2
Cactus11 10 (2,4,22) 30 (16,8,0) – –
Cat15 56 (3,7,29) 64 (30,10,6) 2 –
Centaur15 31 (5,16,72) 166 (64,32,12) 1 –
Dinopet11 9 (6,12,79) 136 (48,24,8) 3 3
Dinosaur14 4 (2,6,191) 38 (24,8,4) – –
Dragon15 100 (25,47,121) 604 (188,132,24) 8 –
Elk14 48 (5,7,33) 72 (28,20,4) – –
Fertility12 37 (4,0,45) 46 (2,26,0) – 1
Guy15 27 (4,5,44) 90 (34,22,2) 1 2
Hand1 21 (2,6,15) 48 (24,12,2) – –
Horse15 17 (3,8,36) 70 (32,12,6) 1 –
Joker15 27 (7,13,83) 154 (56,40,4) 1 2
Octopus15 33 (1,9,112) 56 (36,4,12) – –
Rockerarm12 20 (3,3,27) 28 (12,12,0) 1 –
Vessel14 99 (14,19,141) 304 (81,63,6) 1 –
Warrior9 27 (13,28,82) 234 (112,48,28) 4 2

by tracing separatrices incident at irregular vertices. A comparison
on the Armadillo dataset is depicted in Fig. 13. The PAM layout
contains 191 domains, 18 of which are polar patches; it contains 22
non-polar irregular vertices, all of which have valence at least 6, and
18 poles with valences between 4 and 36. Our layout contains 216
domains, 72 vertices of valence 3, 48 vertices of valence 5 and 8
vertices of valence 6. In spite of a slightly higher number of domains
and singularities, our method produces a much more uniform layout
and contains no vertex with high valence. Transforming a PAM into
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Fig. 12. Visual comparison of the quad layouts listed in Table II.

Table II. Comparison on quad layouts obtained
on the reference models most used in literature;
we report the number of domains of the quad

layout, and the number of irregular vertices with
their valence (†one valence 6 vertex).

Model Domains Val 3 Val 5

Fertility

[Tarini et al. 2011] 253 12 36
[Bommes et al. 2013] 85 12 36
[Livesu et al. 2013] 420 35 59
[Huang et al. 2014] 288 36 †59
Ours 46 2 26

Rockerarm

[Tarini et al. 2011] 98 18 18
[Bommes et al. 2013] 66 15 15
[Livesu et al. 2013] 352 31 31
[Huang et al. 2014] 426 32 32
Ours 28 12 12

a pure quad mesh may require one step of subdivision, which would
introduce further singularities of valence 3 and fragment the quad
layout into many more domains.

5.2 Remeshing comparisons

In Fig. 14 we compare our results with some state-of-the-art methods
designed to produce a good quad remeshing. We also report his-
tograms showing closeness of angles in the resulting quad mesh to a
right angle. Further numerical results on the Rockerarm and Fertility
models are reported in Table III. Note that while all methods tend
to produce faces with nearly right angles on average, our method
usually achieves a smaller relative standard deviation (RSD) in the
distribution. In the Dinosaur dataset (middle of Fig. 14), although
the histogram bell of [Zhu et al. 2015] is slightly narrower, their
mesh has a number of quite sharp angles, resulting in a higher RSD
(15.83% against our 7.78%). Only in the Vessel dataset shown in
the bottom part of Fig. 14, the method of [Zhu et al. 2015] achieves
a slightly better distribution of angles, but our layout contains about
half a number of domains and they appear to be much better dis-
tributed on the surface of the object.

ours [Bærentzen et al. 2014]

Fig. 13. Comparison between a quad layout obtained with our method
(left), and a layout extracted from a PAM model (right). Polar patches of the
PAM layout are depicted in red.
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Table III. Comparisons on remeshing of
two reference models most used in the

literature; we report the average value of
angles of faces and the relative standard

deviation (RSD).

Model Avg RSD

Fertility

[Bommes et al. 2009] 89.86 9.29 %
[Tarini et al. 2011] 89.92 12.21 %
[Bommes et al. 2013] 89.91 18.22 %
[Livesu et al. 2013] 89.98 19.22 %
[Huang et al. 2014] 89.95 10.91 %
Ours 89.97 6.96 %

Rocker arm

[Bommes et al. 2009] 89.95 8.79 %
[Tarini et al. 2011] 89.97 7.50 %
[Bommes et al. 2013] 89.92 18.57 %
[Ebke et al. 2013] 89.74 9.21 %
[Livesu et al. 2013] 89.98 16.24 %
[Huang et al. 2014] 89.96 10.82 %
Ours 89.96 8.45 %

Fig. 14. Visual and numerical comparisons with [Bommes et al. 2013]
and [Zhu et al. 2015]. Images on the right side are mirrored to better show
correspondences.

6. CONCLUDING REMARKS

We have presented a novel method for computing a coarse quad lay-
out that fits an input surface. Our method is simple to use, supports
friendly user interaction and is designed to complete the transforma-
tion pipeline in minutes. Relying on the curve-skeleton, it is able to
capture the structure of the original shape and to cover its surface
with quad domains aligned to its elongated parts. Our quad layout
supports easy extraction of semi-regular pure quad meshes at user-
defined resolution, and domains for UV-mapping. Meshes generated
with our method have few singularities of low valence. Interactive
techniques to refine the layout and sculpt finer details of the mesh
can be easily integrated.

6.1 Limitations

Our method is intended for shapes defined as assembly of general-
ized cones, a class of objects suitable for models used in animation.
Generally speaking, all shapes that cannot be described well with
a curve skeleton are out of the scope of our method. For the same
reasons we are not able to process shapes with cavities, like a cup.
We, for instance, tried to apply our method to the Botijo mesh, but
have been unable to perform the initial mapping step due to the in-
trinsic characteristics of the shape. However, as shown in Section 5,
reasonable results can be obtained even on some objects not directly
intended for animation.

We did not address alignment of the quad layout to sharp creases
(e.g., the border of ears in cat, horse and armadillo, the edge of
the sunshade in guy). This could be added by snapping creases to
borders of domains during parametrization, as proposed in [Tarini
et al. 2011]. Multi-scale detection would be necessary to capture
just creases that are relevant at scales coarse as the desired quad
layout, while disregarding fine details.

6.2 Future work

There are several interesting extensions that can be added to our
interactive system. Following [Bærentzen et al. 2014], it can be
extended to a modeling system, by giving the user the possibility
to edit the curve-skeleton associated to the original mesh, extrud-
ing branches, cloning parts, or specifying the properties of each
branch (e.g., the radii of medial balls). The interactive session can
use symmetry planes or points to modify the skeleton and, thus, the
base complex and the quad layout. The base complex can be used to
model a cage around the shape for animation purposes. Or it can be
taken as the control mesh of a subdivision surface: optimal positions
of nodes of the control grid can be found easily, such that the limit
surface fits the original mesh; fine detail can be easily added via
displacement mapping. Consistent quad layouts of different poses
of the same object can be easily obtained (see results in the supple-
mental material): this provides the basis for a cross-parametrization,
which can be used for the purpose of animation. The quad layout Q
resulting from our method can be also seen as the outer surface of a
solid mesh of hexahedra: in order to obtain a geometric hexahedral
mesh, one should assign 3D positions to all the internal vertices
(e.g., by computing harmonic functions that use the coordinates of
the boundary vertices as Dirichlet boundary conditions).

Finally, we observe that the problem of generating high quality
curve-skeletons is still open. While state-of-the-art methods are
capable of extracting meaningful skeletons from complex shapes
they often fail at understanding the shape at a higher level, generating
a robust one-to-one correspondence with its logical components. We
therefore plan to further investigate this problem, in order to benefit
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Fig. 15. A gallery of coarse quad layouts computed with our method. For each model we also show the curve-skeleton used as input (see also additional
examples in figures 1, 13, 10, 11, 9 and 14).

our algorithm as well as any other method that requires such a high
level of abstraction of a 3D shape.
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