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Figure 1: We perform a FEM static analysis of the input surface to obtain a stress field, from which we derive a double orthogonal
line field (a), an anisotropy scalar field (b) and a density scalar field (c). Then we build a polygonal tessellation whose elements
are sized and aligned according to the stress tensor field; this tessellation is optimized for symmetry and regularity of faces. A
small scale model is fabricated to validate the result with load tests.

Abstract
We introduce a framework for the generation of polygonal grid-shell architectural structures, whose topology is
designed in order to excel in static performances. We start from the analysis of stress on the input surface and
we use the resulting tensor field to induce an anisotropic non-Euclidean metric over it. This metric is derived
by studying the relation between the stress tensor over a continuous shell and the optimal shape of polygons in
a corresponding grid-shell. Polygonal meshes with uniform density and isotropic cells under this metric exhibit
variable density and anisotropy in Euclidean space, thus achieving a better distribution of the strain energy over
their elements. Meshes are further optimized taking into account symmetry and regularity of cells to improve
aesthetics. We experiment with quad meshes and hex-dominant meshes, demonstrating that our grid-shells achieve
better static performances than state-of-the-art grid-shells.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation

1. Introduction

Grid-shells, such as steel-glass structures, have been used
for about forty years in architecture [OR95]. While triangle-
based grid-shells seem unbeatable from the point of view
of strength, quad-based structures have become popular in
the last decade, because of their improved aesthetics and
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nice mathematical properties. According to recent trends,
also hex-dominant structures exhibit interesting geometric
and static properties [PJH∗14, JWWP14].

Most of the design methods proposed in the literature are
concerned with the optimization of grid-shells by acting on
their geometry: the grid topology is given in input, while the
shape, as conceived by the architect, can be modified in or-
der to improve either the geometric properties, or the static
performance of the grid-shell. Conversely, in this work we
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demonstrate how it is possible to improve the static perfor-
mance of a grid-shell by changing its tessellation only, while
keeping the original shape fixed.

The intuition behind our approach stems from the ob-
servation of light and strong lattice structures that appear
in nature, such as bones. The basic idea is to concentrate
more supporting material where the structure undergoes
more stress; this principle has also been applied recently to
3D printing [LSZ∗14]. Besides, the stiffness of a grid-shell
structure can be improved by aligning its elements to the
principal stress directions of the underlying surface, thus ob-
taining an anisotropic grid [TG69, TWK87].

A rigorous development of such intuition is hard, though,
because the static behavior of a grid-shell may change dra-
matically with its connectivity, while the problem of finding
the best grid topology for a given shape has a combinatorial
nature. In order to bring the problem to a tractable form, we
study the statics of a continuous shell representing the input
surface, and we use the resulting stress field to set the density
and anisotropy of cells in our grid-shell.

In this scenario our main contributions can be summarized
as follows:

• We define the relation between optimal anisotropy and
density of a grid-shell structure with respect to a given
stress field computed on a corresponding continuous shell.
• We propose a new method to improve the static perfor-

mance of a grid-shell structure by optimizing its tessella-
tion only, without changing the surface shape. The process
is illustrated in figure 1: we first perform a static anal-
ysis of the surface, from which we obtain an anisotropic,
non-Euclidean metric induced by a double orthogonal line
field, a density field and an anisotropy field. Next, we
build an anisotropic grid-shell driven by such metric.
• We apply geometric optimization to follow surface sym-

metries and to improve the local shape of faces of our
mesh, making them closer to the faces of Archimedeal
solids; this geometric optimization phase greatly con-
tributes to improve the aesthetics of our grid-shells, and
it also slightly improves static performances.
• We demonstrate the effectiveness of the proposed method

when applied to quadrilateral and hex-dominant meshing,
by comparing it to state-of-the-art models. Results are val-
idated by performing static FEM analysis and by using a
reduced scale fabricated model on which we performed
load tests.

2. Related Work

2.1. Statics of grid-shell structures

Grid-shell structures are a modern response to the ancient
need of covering long span spaces. Their supporting struc-
ture is made of beams connected at joints, while cover-
ing panels only act as load. The load bearing capacity of a

grid-shell is directly related to the connectivity of its corre-
sponding mesh. While triangular meshes are more rigid and
stronger than any other competitor, polygonal meshes have
some advantages in terms of ease of construction and lend
themselves to the design of torsion-free structures [PJH∗14].
Generally speaking, beams and joints are subject to axial
forces as well as bending moments. It is well known [BK01]
that the form of a polygonal mesh is maintained only if the
joints are able to develop bending moments, while triangular
meshes maintain their form even if the joints are hinges.

In compressive structures, the principal stress comes
mainly from axial forces, and this explains the deep inter-
connection between them and masonry structures. A purely
compressive grid-shell can be obtained only through a form-
finding process, aimed at finding the funicular surface that
fits the given boundary constraints [BK01,OKF08,OR95]. In
this case, an initial form, as designed by an architect, is taken
just as a guide to obtain the final structure, which may dif-
fer significantly from it. Thrust Network Analysis [Blo09], a
recent form-finding method specific to masonry [PBSH13],
has also been extended to the computation of triangular grids
in static equilibrium [LPS∗13]. A further extension of this
method introduced recently by Tang et al. [TSG∗14] directly
allows for grid-shell form finding: not only it computes the
target funicular surface, but it also optimizes the positions
of edges. In Section 7, we compare some of our results with
grid-shells obtained with this latter method.

If the input form is to be maintained, obtaining a funic-
ular structure is generally not possible. Nevertheless, mesh
topology should be designed in order to obtain a good static
behavior, e.g., by distributing the load as uniformly as pos-
sible among the different beams and by reducing the bend-
ing moments in both the beams and the joints. Some com-
parative parametric analyses [MW13] have been carried out
about the influence of the remeshing pattern on the grid-shell
load bearing capacity. There exist surprisingly few studies
about the optimal (in a structural sense) connectivity and dis-
tribution of edges [SB10], although probably these are – in
conjunction with the surface shape – the most influential pa-
rameters that govern the structural behavior of the grid-shell.
For our comparative experiments, we adopt the equivalence
criterion of simultaneous equal total mass and equal total
length of edges, as in [MW13].

2.2. Architectural geometry

Most contributions in this field are concerned with the
optimization of geometric properties of polygonal meshes
approximating a free-form surface. Many works address
the planarity of faces, such the construction of PQ (pla-
nar quad) meshes [LPW∗06, LXW∗11, TSG∗14, SB10,
YYPM11,ZSW10], CP (circle packing) meshes [SHWP09],
and polygonal hex-dominant meshes [CW07, JWWP14,
PJH∗14, SHWP09, Tro08]. Others try to build meshes from
a restricted number of tiles or molds [EKS∗10, FLHCO10,
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SS10, ZCBK12]. A few works address the realization of
support structures, parallel meshes and torsion-free meshes
[PLW∗07,PJH∗14,TSG∗14]. Among these works, only few
focus on the design of a grid topology [CW07, LXW∗11,
SB10, ZSW10] and just Schiftner and Balzer [SB10] take
into account statics.

3. Statics of grid shells

Robustness of a grid-shell structure is strictly related to the
distribution of load among its beams. Intuitively, the more
uniform the distribution, the stronger the structure. More-
over, the better beams are aligned to principal stress direc-
tions, the more forces act axially on them, while bending
moments are reduced. This leads to a structure with better
statics properties.

Due to the complex non-linear and combinatorial nature
of the problem, finding an optimal connectivity may be a
very hard, non feasible task. In fact, even a small change in
connectivity may drastically change the distribution of load.

Rather than setting the problem as an optimization, we
tackle it in a different way. We first study the statics of
a continuous shell corresponding to the input surface; this
provides us a stress field encoding how tensions propagate
through the surface. We use this stress field to infer preferred
density and anisotropy of a grid-shell covering the same sur-
face. To this aim, we study the relations between an ideal
regular grid-shell subject to a constant stress field, in or-
der to understand the laws that relate locally the density and
anisotropy of forces to the size and anisotropy of elements
of the mesh. Next, we induce a non-Euclidean metric over
the surface, which follows the directions of the stress field,
and whose density and anisotropy are set according to the
proportionality laws obtained from the local analysis. This
metric will be used in Section 4 to compute a correspond-
ing anisotropic meshing. The following subsections provide
details on the analysis that lead us to the computation of the
anisotropic metric.

3.1. Static analysis of a continuous shell

We first consider the input surface as a continuous elastic
thin shell S subject to uniform projected load and with pin-
restrained boundary nodes. In order to perform Finite El-
ement Analysis (FEA), this shell is discretized into struc-
tural triangular faces with uniform thickness and material
properties. We analyze this surface with the Displacement
Method [Bat96], which is a standard in statics analysis. De-
tails are provided in Appendix A.

The FEA returns a tensor field, called the Cauchy stress
tensor, which encodes, at each point p of S and for any pos-
sible direction~t, how much force goes through a differential
of surface centered at p and orthogonal to~t. In particular,
a shell can be treated as a two-dimensional problem in the-
ory of elasticity, which means that tension orthogonal to the

tangent plane is negligible and, therefore, the Cauchy stress
tensor has rank 2. Its two eigenvectors and eigenvalues rep-
resent the principal directions and the principal stresses at
each point, respectively.

The principal directions and stresses are treated as a dou-
ble orthogonal line field Ψ f (p) = (~u f (p), ~v f (p)) where ~u f
and ~v f lie on the tangent bundle of S and define the min-
imum and maximum stress at each point p of the surface,
respectively.

3.2. From continuous shells to grid-shells

Our grid-shell is structurally different from the continuous
shell on which we performed FEA. A transition from the
continuum shell to a discrete but “equivalent” grid-shell
must be set up, but this is neither trivial nor straightforward.
Specifically, a suitable “transfer” criterion must be devised
in order to make this relation clear and consistent. In the fol-
lowing, we show how topology-specific “transfer” criteria
can be conveniently built. This is done by relating the lo-
cal stress tensor Ψ f with a tailored metric tensor Ψe (to be
used for remeshing purpose), by means of a relevant integral-
based function: the strain energy U.

3.2.1. Problem statement

Consider a neighbourhood Πp of a point p ∈ S, subject to
a field of tensions Ψ f (p), and suppose to fit here a topolog-
ically regular (but generally non isotropic) hexagonal grid
aligned with the principal directions (~u f , ~v f ), as shown in
Figure 2. Besides suppose, just for the sake of clarity, that
~u f and ~v f are the horizontal and vertical directions respec-
tively. Then, the norms (|~u f |, |~v f |) can be regarded as inte-
grals of evenly distributed stresses acting along the horizon-
tal and vertical boundaries of the neighbourhood Πp, respec-
tively. Under the action of these forces we assume that the
hexagonal grid can shrink or stretch out, both isotropically or
anisotropically, according to the ‘transfer’ criterion defined
in the following and provided that each hexagon keeps in-
scribed within an ellipse of radii a and b measured along ~u f
and ~v f (see Figure 2 bottom right), respectively. Within this
framework, the strain energy U(~u f , ~v f ,a,b) is used to put
into relation the forces (|~u f |, |~v f |) of the continuous shell
(i.e. the statics quantities) with the lengths (a,b) of the cor-
responding grid-shell cells (i.e., the metric quantities).

We further define L =
√

ab as the scale of the ellipse. In
the isotropic case, we have |~u| = |~v| and L = a = b: in this
case the expression of the strain energy can be simplified to
the density strain energy Ud(|~u|,L). In the anisotropic case,
if we fix the scale of both forces and lengths, we can define
an anisotropy strain energy Ua(

~v f
~u f
, b

a ).

3.2.2. Transfer criterion: a tailored non-Euclidean
metric

We introduce a new non-Euclidean metric gΨ over the sur-
face S, that allows us to compute optimal grid-shell cells.
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(a) Neighbourhood Πp of a point p ∈ S.
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Figure 2: Problem statement. Local fitting of a regular
hexagonal grid in a neighbourhood Πp of a point p ∈ S,
aligned with the principal directions ~u f , ~v f and subject to
boundary forces |~u f |, |~v f | (left). Geometric dimensions of
isotropic (top right) and anisotropic cells (bottom right).

Specifically, this metric maps each unit circle on the tangent
plane centered at p ∈ S to an optimal ellipse of radii (a,b),
as shown in Figure 3. For given forces (~v f , ~u f ) we want to
set L in the isotropic case, and b/a in the anisotropic case,
such that the density strain energy Ud(|~u|,L) is kept constant
over the entire surface S, while the anisotropy strain energy
Ua(

~v f
~u f
, b

a ) is minimized for the local stress ratio |~v f |
|~u f | .

In order to set up gΨ, we define a new metric tensor Ψe =
(~ue,~ve), which is a rescaled version of Ψ f . We introduce a
pair of parameters (de,ae) called density and anisotropy of
the tensor Ψe, respectively, defined as follows:

de = |ue||ve| (1)

ae =
|ue|
|ve|

(2)

Note that only the directions and sizes of (~ue,~ve) are relevant
to Ψe, not their orientations. Therefore, since ~ue and ~ve are
orthogonal, we decouple the scalar and directional informa-
tion and represent Ψe as a triple (~un,de,ae), where ~un is a
unit-length vector parallel to maximal stress and de and ae
are the density the anisotropy as defined above. The met-
ric induced by Ψe on S is given by the symmetric tensor
gΨ = WT W, with

W =

[ √
deae 0
0

√
de/ae

]
(3)

where matrix W is expressed at each point in a local coordi-
nate system having its first axis aligned with ~un. The metric
gΨ is hence completely defined by the two scalar parameters
(de,ae), which can be determined by putting in relation the
stress tensor Ψ f with the metric tensor Ψe as in the follow-

ing.

g : U d= const over ,
Ua=min locally.

g

a

b1

Figure 3: ‘Transfer’ Criterion: a new metric gΨ over S.

3.2.3. Density parameter de

Now the focus is on isotropic hexagonal polygons (see Fig-
ure 2 (top right)) subject to an isotropic state of stress |~u|
(i.e., |~u f | = |~v f | = |~u|), and the problem is that of associat-
ing a suitable size to each grid-shell cell over S, in such a
way that all of them share the same constant strain energy
Ud(|~u|,L) = const. Therefore, the density ‘transfer’ criterion
translates into a scalar field that associates a convenient poly-
gon edge length L to each point p ∈ S. To pin it down, it is
mandatory to derive the expression of the density strain en-
ergy Ud(|~u|,L).

In an isotropic hexagonal grid, as the one in Figure 4(a),
each beam is loaded only at the nodes. This in turn means
that Ud assumes the same expression for each beam, hence
the analysis can be contained to a single beam. For a planar
beam of length L, subject to in-plane loads only, the strain
energy U is given by:

U =
1
2
[∫ L

0
Nε+V γ+Mχ dz

]
(4)

where N is the axial force, ε the axial strain, V the shear
force, γ the shear strain, M the bending moment, χ the cur-
vature and z the curvilinear abscissa of the beam. Equation
(4) can also be expressed in terms of the internal forces only:

U =
1
2

[∫ L

0

N2

EA
+

V 2

GAv
+

M2

EI
dz
]

(5)

where EA, GAv, EI are the axial stiffness, shear stiffness and
bending stiffness of the beam, respectively, whereas A, Av, I
are the cross area, shear area and moment of inertia of the
cross section of the beam, respectively.
Additionally, when the beam is loaded only at the nodes by
a generic force of magnitude |~u|, the internal forces assume
the following form:

N = α|~u|
V = β|~u|
M = (γL−δz)|~u|

(6)
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(a) Isotropic hexagonal grid
subjected to an isotropic con-
stant state of stress.
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(b) Plot of the deformation
energy as a function of the
isotropic grid edge length L.

Figure 4: Derivation of Ud(|~u|,L) for an isotropic hex-grid
subject to an isotropic state of stress.

so that the strain energy becomes:

Ud(|~u|,L) =
1
2
[∫ L

0

(α|~u|)2

EA
+

(β|~u|)2

GAv
+

(γL−δz)2(|~u|)2

EI
dz
]

=
|~u|2

2
L
[

α
2

EA
+

β
2

GAv
+

(γ2 + δ
2

3 − γδ)

EI
L2
]

=
|~u|2

2
(
εL+ζL3)

(7)

It is easily seen that in most structural applications ζ > ε so
that ζL3 � εL, hence the linear term can be neglected and
simply we end up with Ud(|~u|,L) ' |~u|2L3, that holds for a
single beam as well as for the whole grid of Figure 4(a).

Figure 4(b) shows the perfect agreement between equa-
tion (7) and a numerical experiment performed on the grid of
Figure 4(a), carried out by keeping the force |~u| constant and
letting L vary. It shows clearly that the function Ud(|~u|,L)
is a cubic polynomial in L, whose coefficients depend only
on the beams’ cross section (i.e. A and I) and material (i.e
Young modulus E). It is also worth noting that the coeffi-
cient ε of the linear term is numerically negligible with re-
spect to ζ, and this proves the validity of the approximation
Ud(|~u|,L) ∝ |~u|2L3. With this relationship at hand, and re-
calling from equation (1) that under isotropic state of stress
d f = |u|2 and de = |ue|2, the following equations hold:

L3 ∝ 1
|u|2

=
1

d f
→ L∝ d

− 1
3

f (8)

L ∝ 1
|ue|

=
1√
de
→ L∝ d

− 1
2

e (9)

Therefore it follows that the densities de and d f , respectively
belonging to the metric tensor Ψe and the stress tensor Ψ f ,
are related as in the following:

de = d
2
3
f =

(
|u f ||v f |

) 2
3 (10)

3.2.4. Anisotropy parameter ae

Now the focus is on anisotropic hexagonal polygons (see
Figure 2 (bottom right)) subject to an anisotropic state of
stress (|~u f |, |~v f |), and the problem is that of associating a
suitable ratio b

a to each grid-shell cell over S, in such a way

that the anisotropy strain energy Ua(
~v f
~u f
, b

a ) results locally
minimized. Therefore, also the anisotropy ‘transfer’ crite-
rion consists of a scalar field which associates a convenient
polygon anisotropy ratio b

a to each point p ∈ S. To pin it
down, it is mandatory to derive the expression for the mini-
mum of the anisotropy strain energy min

[
Ua(

~v f
~u f
, b

a )
]
, where

the sum |~u f |+ |~v f | is kept constant.

While obtaining an analytic result is rather trivial for the
density case, things are not easy for the anisotropy. There-
fore, the relationship min

[
Ua(

~v f
~u f
, b

a )
]

can only be obtained
numerically. Figure 5(b) shows the results of a parametric in-
vestigation in which the strain energy Ua has been computed
for several couples of ratios ~v f

~u f
and b

a , paying attention to
keep the sum |~u f |+ |~v f | = const and also Ltot = const. The
figure shows that the curve min(Ua) is almost a straight line
with slope m ' 1.15. This means that the minimum of the
anisotropy strain energy is achieved when the force ratio ~v f

~u f

and the geometric ratio b
a are roughly the same. Therefore,

we have min
[
Ua(

~v f
~u f
, b

a )
]
→

~v f

~u f
∝ b

a
.

In Section 6.2 we will introduce tuning parameters that
allow the user to set the range of densities and anisotropies
spanned by a mesh, thus in the following we will assume that
the slope m is absorbed by the anisotropy parameter and we
will simply set the anisotropies of Ψe and Ψ f to be equal,
i.e.:

ae = a f =
|u f |
|v f |

. (11)

4. Statics-aware remeshing

We exploit the non-Euclidean metric gΨ defined in the pre-
vious section to compute an anisotropic, density varying
remeshing of surface S. In fact, we compute a mesh that
is isotropic and as regular as possible with respect to metric
gΨ: in Euclidean space, cells of such mesh will be scaled,
stretched and aligned according to the guiding tensor field
Ψe, thus forming a grid-shell whose elements are locally
close to the ideal shape as described in Section 3.2.

In order to support different meshing techniques in the
same framework, we follow the approach described in
[PPTSH14], transforming metric gΨ into a Euclidean metric
on a deformed surface S′. This metric becomes locally Eu-
clidean if the underlying space in the neighborhood of each
point p is deformed by tensor W computed at p, as defined
in Equation 3. We evaluate W at each triangle of the input
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(a) Anisotropic
hexagonal grid
subject to an
anisotropic state of
stress.
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Figure 5: Derivation of the relationship min
[
Ua(

~v f
~u f
, b

a )
]

for
an anisotropic hex-grid subject to an anisotropic state of
stress.

Figure 6: Density, anisotropy and directional field of the
British dataset (left); the resulting deformed domain mesh
(top right) and the corresponding undeformed domain (bot-
tom right) with the resulting anisotropic, density-varying
distance field for a set of samples on the surface.

mesh S, and we resolve an optimization problem that tends
to deform each triangle t to its ideal shape to make the met-
ric Euclidean over t. See [PPTSH14] for further details, and
Figure 6 for an example. Note that although this technique
could have limitations under drastic deformations, our archi-
tectural surfaces always require mild deformations (see also
Section 6 about bounding the dynamic range of density and
anisotropy).

Once the deformed surface S′ has been obtained, we can
apply an isotropic remeshing method over it. The mesh com-

Figure 7: A single face f of the ACVT with the eigenvectors
resulting form PCA (left); the un-stretched polygon f ′ with
the aligned target polygon pt( f ′) (middle); and the com-
puted displacement vectors in the original space (right).

puted in this way is finally undeformed, thus obtaining the
desired anisotropic remeshing of S.

As illustrated in Figure 12, we have experimented
our framework with several remeshing methods: uniform
quadrilateral meshes, computed by using [BZK09]; uni-
form hex-dominant meshes, obtained by using a variant of
[LLW14]; and Centroidal Voronoi Tassellations, obtained
by using a variant of [VC04]. Parametrisation-based meth-
ods [BZK09, LLW14] require a guiding field to be defined
over the input surface. We have experimented both with the
line field induced on S′ by Ψe, and with a smooth cross field
roughly alignd to curvature, as proposed in [BZK09]. Re-
sults obtained with the different methods are illustrated in
Figure 12 and discussed in Section 6.

4.1. Regularization

In order to improve the aesthetics, as well as the planarity
of faces, we optimize their shape to make them as similar
as possible to stretched regular polygons. To this aim, we
adopt a framework similar to [BDS∗12], where we alternate
per-polygon and per-vertex fitting steps.

In the per-polygon step, for each face f , we first perform
a Principal Component Analysis to evaluate how much f is
stretched with respect to a regular polygon. Then we com-
pute a new polygonal region f ′ corresponding to f deformed
(i.e., un-stretched) according to the two highest rank eigen-
vectors of the PCA. Next, we define a target regular polygon
pt( f ′) having the same number of edges and equal perimeter
as f ′; then, using [BM92], we rigidly align pt( f ′) with f ′;
finally, we stretch the oriented polygon pt( f ′) back through
the reverse deformation that was applied to f , and we use the
vertices of this stretched regular polygon as target positions
to displace the vertices of f . Figure 7 shows the steps of this
process for a single face.

In the per-vertex fitting step, for each vertex v indepen-
dently, we evaluate the position minimizing the sum of
squared distances from all the target positions specified for v
by its incident faces. We use a damping factor for improving
convergence of this procedure.

© 2015 The Author(s)
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Figure 8: The effects of the regularization process on pla-
narity (left) and regularity (right). The initial ACVT (top),
optimized for planarity with Shape-Up (middle) and regu-
larized using our procedure (bottom).

An interesting side effect of this regularization procedure
is that it tends to make the length of edges of a single poly-
gon more uniform, so that the areas of faces will vary ac-
cording to the number of sides of the polygons. From an
aesthetic point of view, this situation matches the look of the
Archimedean class of semi-regular polyhedra.

Given the similarity of this optimization approach with
[BDS∗12], we have also compared our results with the pla-
narization approach presented in that paper. Figure 8 shows
our approach in comparison with our initial tessellation and
with the result of Shape-Up planarization. As expected,
Shape-Up achieves better planar faces, while our algorithm
achieves a much better regularity of faces, hence better aes-
thetics. Planarity is usually measured on quad meshes as dis-
tance between diagonals divided by average edge [TSG∗14].
We generalize this measure to polygonal meshes as the av-
erage distance of vertices to the best fitting plane divided by
half perimeter. Regularity of a face is measured as the sum
of squared distance of its vertices to their target positions,
divided by its area.

Figure 8 clearly shows that our regularization al-
gorithm yields faces that are not planar. Nevertheless,

according to our definition of planarity, the average non
planarity ratio for the panels of the Botanic dataset is just
ε = 0.0025. With reference to a hypothetical isotropic
hexagonal face with an edge length L = rcirc = 1.5
m, this value yields a very small average distance be-
tween the face vertices and their interpolating plane:
dav = 3 ·L · ε = 3 ·1.5 m ·0.0025 = 0.01125 m = 11.25 mm.
Assuming, for the sake of simplicity, that we yeld single
curvature for the panel, this out-of-plane measure corre-
sponds to a radius of curvature R ' 100 m, a huge and
reassuring value if compared to the limit value R ' 3 m
achievable with cold bent glass [BIVIC07, p.1].

Regularization also slightly improves the overall struc-
tural properties of the grid-shell structure (10% on average
in our experiments). The more uniform length of edges re-
sulting from regularization is also an advantage during pro-
duction. Figure 9 shows a comparison between a meshing
obtained using CVT only and the one obtained after optimi-
sation and symmetrisation.

Non Optimized Optimized
λ = 2.56 δ = 149.1 λ = 2.79 δ = 138

Figure 9: Comparison of non-optimized versus symmetrized
and optimized tessellation of the Shell dataset. See Section
6 for the meaning of statics parameters λ and δ.

5. Implementation and user control

In most cases, the result of static analysis is not directly us-
able. The stress field, as obtained from FEA, may contain
spikes of intensity and abrupt changes of direction of the line
field. Moreover, it does not follow closely symmetries of the
surface, and it may contain drastic variations of density and
anisotropy that are not compatible with production. There-
fore, before using field Ψ f to generate our guiding field Ψe,
we smooth and symmetrize it. We also allow the user to ad-
just the dynamic range of density and anisotropy of Ψe prior
to generate the induced metric.

5.1. Smoothing

We extrapolate line field ~un from Ψ f and we smooth it fol-
lowing [BZK09], modified as in [PLPZ12]. In short, we
trade-off smoothness and faithfulness to the original line
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Figure 10: Smoothing and saturating the density (left), the
anisotropy (middle), and the two orthogonal line fields
(right) of the Botanic model: upper side original, lower side
smoothed.

field, weighting the second term with anisotropy: we pre-
serve those portions of field where there is a significant dif-
ference between the magnitudes of the two stress vectors,
while obtaining a smoother field elsewhere.

We smooth the density d f and anisotropy a f of Ψ f in-
dependently, by treating them as scalar fields and enforc-
ing each of them to satisfy Lipschitz condition [BO05], i.e.,
|d f (p)−d f (p+~ε)|< L|~ε|, with L approximately equal to the
diameter of the smallest face we expect to obtain. Smooth-
ing here is performed through an upper saturation process
that preserves the extrema of the function. The results of
smoothing are depicted on the lower side of Figure 10.

5.2. Symmetrization

Many architectural models present symmetry planes that
should be preserved in the generated grid-shell. Assume
we have one or more symmetry planes (shown in red in
Fig.11) that partition the mesh into regions. We cross pa-
rameterize each symmetry region so that µi, j(p) be a cross-
parametrization that maps a point p of region i onto its sym-
metric mate in region j. Cross-parametrizations are com-
puted between adjacent regions in pairs and propagated
about the center of symmetry. For two adjacent regions i and
j, we first cross-map corresponding points on their bound-
aries, exploiting the common boundary along the symme-
try plane, plus symmetric corners that appear along intersec-
tions with other planes of symmetry and/or sharp corners on
the boundary of the object. Then we compute a harmonic
map for each region onto the same parametric domain, in
such a way that symmetric points are mapped to the same
point in parameter space. Finally, we compute a symmetric
field Ψ̄ f by averaging it component-wise at all the corre-
sponding points in the various regions (see Figure 11).

Figure 11: Symmetrization of Ψ for the Lilium dataset: on
the left the cross parametrization defined by two symmetry
planes; on the center/right the density field (top) and the line
field (bottom), before/after symmetrization.

5.3. Tuning anisotropy and density

Since the variation of density and anisotropy induced from
Ψe may be not compatible with constructability of the grid-
shell, we let the user adjust the desired variation of density
and the desired amount of anisotropy over the surface, by in-
troducing two parameters D,A≥ 1 and rescaling the density
d and anisotropy a of Ψe in the intervals [1,D] and [1,A],
respectively, prior to computing deformation. In Section 6,
we show how such parameters can be used to fine tune the
statics as well as the aesthetics of the grid-shell.

6. Implementation Details

Our method has been implemented in C++. Static analysis
has been performed by using the GSA Finite Element Anal-
ysis software [Oas14], both on the input surface to obtain the
stress tensor, and on the various grid-shells to test their struc-
tural behaviour. In particular, linear static analyses (we refer
with LS) have been performed on the input surface (mod-
elled as a continuous shell represented with linear triangular
plate elements) in order to obtain the stress tensor. Addition-
ally, geometrically non-linear elastic analyses (we refer with
GNA) have been carried out on the grid-shells (where each
edge was modelled as a beam element) in order to get the
equilibrium path and the representative parameters (λ,δ) at
collapse. These measures, which are most relevant in struc-
tural engineering, are two scalars defined as follows [Cri91]:

• The non-linear buckling multiplier λ, which measures the
ability of a structure to bear the applied load q (equal to
a unitary uniformly distributed load in this case) before
collapsing. It measures the robustness of the structure and
therefore it should be ideally maximized;

• The nodal displacement δ, which measures the maximum
nodal distance between the deformed shape and the ref-
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erence shape when the structure is standing under the ap-
plied load λq. It measures the compliance of the structure
and it should be ideally minimized.

For the sake of completeness, a brief description of LS and
GNA analysis within the Finite Element Method context is
provided in Appendix A.

6.1. Meshing technique

In order to compare the different meshing techniques de-
scribed in Section 4, we also measure how much each
remeshing deviates from the target metric gΨ. To this aim,
we define an error measure that exploits a variation of defor-
mation process of regularization (see Section 4.1). We de-
form each polygon of the output mesh by using the inverse
metric g−1

Ψ
(instead of using the eigenvectors of the PCA)

and we take the residual error due to the rigid alignment of
such deformed polygon to the target regular polygon (see
Figure 7). Note that this measure takes into account both
density and anisotropy.

In order to respect the scale and anisotropy induced by
Ψe in physical space, we need a meshing that is as uni-
form as possible in deformed space. It is well known that
this is possible only if singularities are placed at points with
high Gaussian curvature, otherwise big distortions appear in
parametrization. By following curvature in deformed space,
instead of the direction expressed by Ψe directly, we trade
alignment for better consistency of density and anisotropy.
Notice that alignment to a line field would generate singu-
larities with index 1/2 and index −1/2 only; however, such
singularities would correspond to vertices with valence 2 and
6 during meshing. In quad meshing, valence 3− 5 irregular
vertices are highly preferred over vertices of valence 2− 6.
For this reason, we mildly smooth the field in deformed
space by treating it as a cross field, while using the input
field as a soft constraint: such smoothing tends to separate
index 1/2 and−1/2 singularities into pairs of index 1/4 and
−1/4 singularities, respectively.

Instead, to generate regular hexagonal meshing, we used
the method of [LLW14] which computes a quad meshing
based on a line field. Again, we compute a line field which
is aligned to the curvature direction on the deformed space,
then we extract the hexagonal meshing.

The bottom part of Figure 12 shows the residual error for
each remeshing technique on the Neumünster dataset. From
this picture we may observe that the parametrisation-based
methods that align the elements to the curvature of the de-
formed shape S′ - namely, Figures 12(b) and 12(d) - adapt
to the target metric better than the ones that align directly to
the projection of Ψe on S′ - namely, Figures 12(a) and 12(c).
This result, which seems contradictory, comes from distor-
tion introduced by parametrization-based remeshing meth-
ods. Only an isometric parametrization allows extracting a

uniform tessellation of S′, hence a tessellation of S that re-
spects the target metric, while distortions in the parametriza-
tion result into deviations from the metric. Parametrization
is much closer to isometry if the guiding field follows the
geometry of S′ (namely, its curvature) rather than the (arbi-
trary) field Ψe projected on it. We experimented this behav-
ior consistently with all datasets, thus in the following we
will just consider parametrization-based methods based on
curvature in deformed space. Remeshing based on CVT, on
the contrary, does not suffer from these drawbacks, since it
is performed directly in physical space S′ and it is isotropic
in nature. Figure 12(e) shows that it matches rather well the
desired metric.

No single method between those corresponding to cases
(b), (d) and (e) of Figure 12 gives the best results for
all datasets, therefore we have experimented with all three
methods. To support the validity of our approach, we ob-
serve that in all experiments the statics parameters (buckling
multiplier and nodal displacement) become consistently bet-
ter as the meshing better adapts to the target metric.

6.2. Tuning parameters

As we mentioned in section 5.3, our method works on two
parameters that must be set by the user: the threshold for
density D and the threshold for anisotropy A. Comparative
tests of static analysis require that different structures have
the same weight and total length of beams [MW13]. We tol-
erate a 5% of total length variation.

We test how the variation of density and anisotropy in-
fluence the buckling multiplier λ and nodal displacement
δ. We show experiments on a funicular surface: the Shell
dataset. We vary density and anisotropy within a range that
goes from 1 to 4, with unit step, for a total of 16 test cases.
For this experiment we have used CVT meshing.

Some pictures illustrating the experiment are shown in
Figure 13 (top views and graphs). Note that all our solutions
outperform the isotropic meshing obtained with D = A = 1.
However, a too large value of D and A may result in a dete-
rioration of the static performance. In the examples shown
in the next sections we keep the parameters in a reason-
able range, showing that we always improve significantly the
static performances with respect to state-of-the-art remesh-
ing methods.

7. Results

We compared our grid-shells with some quadrilateral
meshes obtained with [TSG∗14, VHWP12]. As for the pre-
vious experiments, we set our parameters to match the total
length of edges of the structures we compare with. The ex-
periments are summarized in Table 2 and the related meshes
are shown in Figure 16.

We present two different tessellations for each surface:
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Ψe a b c d e
λ = 1.38 δ = 37.29 λ = 1.74 δ = 24.44 λ = 1.03 δ = 106.5 λ = 1.04 δ = 94.86 λ = 1.18 δ = 61.91

Figure 12: On the left, the guiding field (line field, density and anisotropy) for the Neumunester dataset. On the right, re-
sults different meshing techniques used in our framework: Quad meshing using [BZK09] following Ψe (a); Quad meshing
using [BZK09] following curvatures on deformed space (b); Hexagonal meshing using [LLW14] following Ψe (c); Hexago-
nal meshing using [LLW14] following curvature directions (d); Hex dominant CVT tessellation using [VC04]. The meshing
have approximately the same total edge length. The colored diagrams depict closeness of mesh faces to prescribed density and
anisotropy on a blue-to-red error scale. Parameters of buckling and deformation are given below.

Dataset Model # Vertices # Faces # Edges Total length (m) λ δ

Aquadom [VHWP12] 1078 1004 2074 3906 1.38 164.1
Hex (3,3) 2374 1161 3536 4036 2.72 117.1
Quad (3,2) 1223 1133 2357 3994 2.34 129.9

Botanic [TSG∗14] 1121 1076 2196 1989 0.83 335.4
Voronoi (3,3) 2352 1177 3528 2016 1.48 171.6
Quad (4,4) 1071 1005 2075 1994 1.65 198.7

British [TSG∗14] 1648 1568 3216 4286 2.70 27.9
Hex (2,2) 3219 1588 4807 4079 3.0 19.44
Voronoi (3,3) 3460 1728 5188 4114 3.23 26.7

Lilium [VHWP12] 1648 636 3216 1147 1.42 77.6
AnisoQuad (3,3) 650 592 1241 1229 2.75 46.48
Voronoi (3,3) 1444 723 2166 1182 2.97 37.55

Paraboloid Voronoi (3,3) 1904 949 2852 2691 2.3 74.55
Shell Voronoi (3,3) 1192 593 1784 480 2.79 138.0

Table 2: Statistics on datasets and results: for each dataset we show statistics on models taken for comparison and models built
with the proposed approach. Models from [TSG∗14, VHWP12] are quad meshes. Quad and Voronoi refer to our models of
anisotropic quad meshes and ACVT, respectively, computed with parameters (D,A). For each model we report: the number of
vertices, faces and edges; the total length of beams in the model; the buckling factor λ; and the nodal displacement δ.

meshing techniques have been selected by considering both
faithfulness to the target metric and aesthetic criteria.

The setup of the each experiment is pretty realistic. We
tuned the parameters by considering the size of each model.
The setup is summarized in table 1. Our statics aware grid-
shells always outperform state-of-the-art models, in terms of
both buckling and displacement.

Figure 15 shows the effect of tessellation on the struc-
tural behavior of the grid-shell. In the Lilium dataset, the
forces flow from the top to the restraints along the red paths
of structural elements; in our models, such paths are better
distributed than the ones in [VHWP12], thus reducing the
elastic strain energy, as well as the maximal displacement.
In the British Quad dataset, almost all the beams of our
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λ = 1.74 δ = 24.44 λ = 2.79 δ = 138.00 λ = 2.3 δ = 74.55

Figure 14: Renderings of some of the models produced. From the left: Neumünster, Shell, Paraboloid.
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Figure 13: 4×4 test on the Shell model.

model undergo the same axial force, whereas in the model
of [TSG∗14] there is a strong variance of axial forces, in-
cluding strong compressions (red).

7.1. Load tests on a physical replica

We have fabricated a reduced scale model of the Shell struc-
ture composed of 465 joints, 697 beams and 462 panels. The
side of this reproduction is 2.4 meters. Each joint has been
produced independently using a FDM printer; sticks of wood
simulate beams; external panels are made of PET (Polyethy-
lene terephthalate) and they have been laser-cut. Each com-
ponent of the structure has a physical label (3D printed on

Surface Beams qdead qglass qsnow

Shell φ (110, 25) 0.90 0.75 1.00
Neumünster φ (60,10) 0.50 0.75 1.00

British φ (100,15) 0.65 0.75 1.00
British tri φ (130, 20) 1.00 0.75 1.00
Paraboloid φ (130, 20) 0.75 0.75 1.00
Aquadom φ (100,15) 0.75 0.75 1.00
Botanic φ (70, 15) 0.65 0.75 1.00
Lilium φ (50, 10) 0.35 0.75 1.00

Table 1: Static analyses setup: For each model, the second
column reports the diameter and the thickness of the steel
beams in mm. The third, forth and fifth columns report the
load induced by each component of the simulated scenario
in (kN/m2): beams, glass and uniformly distributed load on
the surface (e.g. snow).

b

a c

Figure 17: a. Some particular of the physical replica ; b.
Setup for load tests over the fabricated model; c. displace-
ment / external load plot.

joints, carved by laser on panels or glued paper on sticks),
mentioned in an assembly map to support the manual as-
sembly phase. The panels have been fixed by screwing a
flat washer at each joint. Some particulars on the replica are
shown in Figure 17.a.
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[VHWP12] Quad (3,3) Voro (3,3)

[TSG∗14] Voro (3,3)

Figure 15: Comparisons of distribution of AxialForces on the datasets. Red corresponds to compression, blue corresponds to
traction.

We have performed load tests on the physical structure, by
incrementally applying weights and monitoring the displace-
ment of the corners of the structure with a proper sensor (see
Figure 17.b). The result of this experiment is shown in the
graphs of Figure 17.c.

As shown in Figure 18, there is an excellent agreement
between the predicted and the experienced results. In fact,
the global deformed shape which occurs in correspondence
of the buckling of the structure, is nearly the same on both
the numerical and the real mode.

Figure 18: Buckling shape of the mockup: optimal agree-
ment between numerical prediction (Top) and experimental
results (Bottom).

8. Concluding remarks

We have presented a practical framework that, given a fixed
shell shape, allows us to generate grid-shell structures with

static performances that are better than the current state of
the art.

We start from a FEM stress analysis of the input surface
and we define a method to convert the computed stress field
into an anisotropic, density-varying, non-Euclidean metric
that we use to drive the remeshing of the input surface. We
derive this new anisotropic metric so that the shape and the
size of the generated cell is locally optimized for stiffness
w.r.t. to the computed stress. We have applied this framework
to various tessellation methods to generate hex-dominant as
well as quad meshes optimized for good static behavior.

We have validated our claims by means of simulation as
well as experimentally. We have tested the generated struc-
tures evaluating, by means of industrial standard non-linear
analysis simulations, their behavior in terms of non-linear
buckling multiplier and nodal displacement. Moreover we
have built a reduced scale model and we have performed
physical tests on it to verify the soundness of the behavior
predicted by the simulation. The result of our experiments
demonstrate that our grid-shells achieve significantly bet-
ter static performances with respect to state-of-the art grid-
shells.

Our method is fairly general and it can be applied to
generic architectural surfaces, including non-funicular sur-
faces. Results can be deteriorated in the presence of dras-
tic deformations due to too high dynamics in either density
or anisotropy. This is not realistic scenario, though, because
drastic variations in size and/or highly elongated shapes do
not lend themselves to practical construction. For this rea-
son, we have inserted user parameters to set the desired level
of density and anisotropy.
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[VHWP12] Hex (3,2) Quad (3,2)
λ = 1.38 δ = 164.1 λ = 2.72 δ = 117.1 λ = 2.34 δ = 129.9

[TSG∗14] Voro (3,3) Quad (4,4)
λ = 0.83 δ = 335.4 λ = 1.48 δ = 171.6 λ = 1.65 δ = 198.7

[TSG∗14] Voro (3,3) Hex (3,3)
λ = 2.7 δ = 27.9 λ = 3.23 δ = 26.74 λ = 3.0 δ = 19.44

[VHWP12] Voro (3,3) Quad (3,3)
λ = 1.42 δ = 77.61 λ = 2.97 δ = 37.55 λ = 2.75 δ = 46.48

Figure 16: Comparison with state-of-the art remeshings, top views. From the top: Aquadom, Botanic, British, Lilium.

Our method does not guarantee optimality. Further im-
provement could be obtained by geometric optimization that
moves the vertices of the mesh tangentially, without chang-
ing either the surface or the topology, while seeking for a
better distribution of forces. We plan to tackle this problem
in future work.

Other interesting extensions concern rationalization, by
exploiting the tendency of our shape optimization algorithm
to produce cells close to Archimedean solids. Moreover
we can also extend our regularization technique to produce

single-curvature panels that can be produced with cold bent
glass.

Acknowledgements

The research leading to these results was funded by EU FP7
project ICT FET Harvest4D (http://www.harvest4d.org/,
G.A. no. 323567). We would like to thank Marco Tarini
for his support on hex mesh processing, Carmelo Di Maria
for his support on the physical replica, Daniele Panozzo for

© 2015 The Author(s)
Computer Graphics Forum © 2015 The Eurographics Association and John Wiley & Sons Ltd.



Pietroni et al. / Statics Aware Grid Shells

providing the code of Libigl [JP∗13], Etienne Vouga and
Chengcheng Tang for providing data for comparisons.

Appendix A: Details on Finite Element Analysis

The displacement method is used to numerically solve prob-
lems in elasticity. The structure is represented as an as-
sembly of parts (i.e. finite elements, trusses, beams, plates,
shells...), whose stress/strain state is determined by their
nodal displacements together with their shape functions
[Bat96, p. 149]. The global equilibrium equations are for-
mulated in terms of the displacements p of the nodal coor-
dinates of the system, its global stiffness matrix K and the
applied forces q [Bat96, p. 152]:

Kp = q. (12)

The stiffness matrix K depends only on geometry of the
mesh and on material properties. The nodal displacements
represent the solution of the problem: they are stored in a
6× n matrix p, where n is the total number of nodes com-
posing the structural model and each node has three trans-
lational and three rotational degrees of freedom. Once dis-
placements are known, the stress tensor can be easily com-
puted by means of the elements shape functions and the
generalized Hooke’s Law: a first order linear approximation
of the relationship between strains (i.e. deformations as the
first order derivatives of nodal displacements p) and stresses.
Stresses σi j , strains εkl and Hooke’s law ci jkl are two sec-
ond order tensors and one fourth order tensor, respectively:
σi j = ci jklεkl , where the Einstein summation convention is
intended.

When the system is linear or the applied load is small,
a Linear Static analysis (LS) is sufficiently accurate and it
consists in just applying equation 12. It yields the displace-
ments of the nodal coordinates p as well as the stress ten-
sor for each element. Instead, when the system displays high
non-linearities (that is the case of grid-shells loaded up to
collapse), LS analysis is no more reliable and Geometrically
Non-Linear Analysis (GNA) is adopted. This well-known
analysis consists in repeatedly applying equation 12 within
a Newton-Raphson iteration scheme:

Kr
(
pr+1−pr

)
= qi−qr (13)

where Kr is the tangent stiffness matrix at the r-th iteration,
pr+1 and pr are the displacement vectors at the (r+1)-th and
r-th iterations, respectively, qi is the external load vector in
correspondence of the i-th load increment and qr is the inter-
nal forces vector at the r-th iteration. Stiffness matrix Kr and
loads qr are recomputed by updating mesh geometry with
displacements pr. Equation 13 can be rewritten in explicit
form as:

pr+1 = pr +K−1
r
(
qi−qr

)
(14)

that is solved numerically until the norm ||qi−qr|| is within

acceptable limits. At each step the load qi is incremented
of a certain amount ∆qi (manually or automatically deter-
mined) and equation 14 is applied. If the aforesaid norm is
low enough, then another load increment ∆qi+1 can be ap-
plied, otherwise the current increment gets halved and equa-
tion 14 is applied again until the convergence condition is
met. In particular, the structure is deemed to be collapsed
when no convergence can be achieved in a certain number
of iterations within the same load increment. Hence GNA
requires several runs of LS analysis, in each of which the
tangent stiffness matrix must be built (as the geometry of
the structure changes at each load step) and inverted, there-
fore it is an highly time consuming task. Nevertheless, with
this technique the non-linear behavior of the structure under
loading can be closely followed up to collapse.

In summary:

• The non-linear buckling multiplier λ is the summation of
all the load increments ∆qi applied in a GNA analysis up
to collapse;

• The displacement δ mentioned in Section 6 is a user se-
lected single entry of the 6× n displacements matrix p at
time of collapse. Usually this is chosen as the z displace-
ment of a specific node which is highly representative of
the structure’s behavior (e.g. the pole of a dome, the key
brick of an arch);

• The relationship between δ and λ is non-linear and is nu-
merically described by one of the 6× n scalar equations
expressed by the vector equation 14, in particular that re-
ferring to the nodal coordinate associated to δ.

For further details see [Bat96, Cri91, Cri97].
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