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1 Density and Anisotropy: Common Assump-
tions

It is common knowledge, both in structural mechanics and structural optimiza-
tion, that a structure which minimizes the strain energy under a prescribed set
of forces is an optimal structure. Therefore we take the strain energy U as the
reference parameter and then we use it to validate the structural performance
of our structures.
Our structures are grid-shells composed of cells. Minimizing the global strain
energy requires to minimize the strain energy locally for each individual cell.
As a consequence, we assume that the cells are our structure, and then we try
to derive:

1. the relationship U(L) between the strain energy U and the isotropic
hexagonal cell edge length L. We call this relationship “density”;

2. the relationship U(
Fy

Fx
, ba ) between the strain energy U and the couple

of independent variables
Fy

Fx
and b

a . Respectively the ratio between ver-
tical and horizontal forces loading the hexagonal grid (their sum being
constant) and the ratio between the radii of the ellipse circumscribed
to the (generally anisotropic) hexagonal cell. We call this relationship
“anisotropy”.

2 Density

In an isotropic hexagonal cell loaded as in Figure 1, each beam is loaded only
at the nodes: therefore the analysis can be focused on a single beam only. For
a planar beam of length L subject to in-plane loads only, the strain energy U is
given by:

U =
1

2

[∫ L

0

Nε+ V γ +Mχ dz
]

(1)

where N is the axial force, ε the axial strain, V the shear, γ the shear strain,
M the bending moment, χ the curvature and z the curvilinear abscissa of the
beam.
Equation (1) can also be expressed in terms of the internal forces only:

U =
1

2

[∫ L

0

N2

EA
+

V 2

GAv
+
M2

EI
dz
]

(2)
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(a) Isotropic Hexagonal Grid subjected to
generic state of stress.
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(b) Plot of the deformation energy as a
function of the length L of the beams.

Figura 1: Hexagonal Grid, computation of Density Parameter.

where EA, GAv, EI are respectively the axial stiffness, the shear stiffness and
the bending stiffness of the beam, whereas A, Av, I are respectively the area,
shear area and moment of inertia of the cross section of the beam.
Since the beam is loaded only at the nodes by a generic force F , the internal
forces can be expressed as:

N = αF

V = βF

M = (γL− δz)
(3)

so that the strain energy becomes:

U =
1

2

[∫ L

0

(αF )2

EA
+

(βF )2

GAv
+

(γL− δz)2

EI
dz
]

=
F 2

2
L
[ α2

EA
+

β2

GAv
+

(γ2 + δ2

3 − γδ)
EI

L2
]

=
F 2

2

(
εL+ ζL3

)
(4)

In most of the structural applications it happens that ζ > ε and ζL3 >> εL,
it follows that the linear term can be neglected. Finally, the strain energy U
proper of a beam which is loaded only at the nodes, takes the form:

U ∝ F 2L3 (5)

The same relation scales up to the whole grid of Figure 1a as well. Nevertheless,
we have verified the result of equation (5) through a numerical experiment. We
tiled a regular hexagonal pattern (see Figure 1a) and we assigned to all beams
a uniform cross section (e.g. circular) and we applied a uniform force F acting
on the whole boundary (e.g. the sum of all horizontal forces equals the sum of
all vertical forces). Then we computed the global strain energy U for iteratively
increasing edge lengths L: Figure 1b shows clearly that the function U(L) is
a cubic polynomial in L, whose coefficients are constant, as they rely only on
beams’ cross section (e.g. area A and moment of inertia I) and material (e.g.
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Young modulus E). This result confirms the validity of equation (5). It is also
worth to notice that in Figure 1b the coefficient of the linear term ε is smaller
than the coefficient of the cubic term ζ: this proves that our assumption of
neglecting the linear term is valid.

3 Anisotropy

In an anisotropic hexagonal grid, loaded as in Figure 2a, the strain energy U
depends both on the ratio

Fy

Fx
between vertical and horizontal forces (their sum

Fy + Fx being constant) and on the ratio b
a between the radii of the ellipse

circumscribed to cell.
Unfortunately, outlining the relationship between the strain energy U and

the couple of ratios (
Fy

Fx
) and ( ba ) is not straightforward. Therefore we set up a

numerical experiment where we compute the strain energy for several couples
of ratios (

Fy

Fx
) and ( ba ), paying attention to keep constant both the sum Fy +Fx

and the overall length of the grid Ltot. Figure 2b shows the experimental curve
C = min

[
U(

Fy

Fx
, ba )
]
.

The relationshipmin
[
U(

Fy

Fx
, ba )
]

is almost linear, and close to the trivial equation
Fy

Fx
= b

a . This means that the minimum of the global strain energy U is met
if respectively the ratios between vertical and horizontal forces and between
vertical and horizontal diameters of the ellipse circumscribed to an anisotropic
cell, are the same.

(a) Anisotropic Hexagonal
Grid subjected to generic
state of stress.
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(b) Plot of the anisotropy ratio b
a

of a
stretched grid against the anisotropy ratio
Fy

Fx
of the force field, yielding the minimal

strain energies.

Figura 2: Hexagonal Grid, computation of Anisotropy Parameter.
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