A Statistical Method for SVBRDF Approximation from Video Sequences in General Lighting Conditions (Additional Materials)

Gianpaolo Palma, Marco Callieri, Matteo Dellepiane, Roberto Scopigno

Visual Computing Lab, ISTI-CNR, Pisa, Italy

Appendix A

Let μ , *m* and the σ be respectively the mean, the median, and the absolute deviation of a random variable *X*. Then

 $|\mu-m| < \sigma.$

Proof From the Jensen's inequality we know that if *X* is a random variable and φ is a convex function, then $\varphi(\mathbb{E}[X]) \leq \mathbb{E}[\varphi(X)]$. Then we have

$$\begin{aligned} |\mu - m| &= |\mathbb{E}[X] - m| \\ &= |\mathbb{E}[X - m]| \\ &\leq \mathbb{E}[|X - m|] \\ &\leq \mathbb{E}[|X - \mu|] = \sigma \end{aligned}$$

where the first inequality comes from the Jensen's inequality applied to the absolute value function, which is convex. The second inequality is true because the median minimizes the absolute deviation. \Box

Appendix B

Given the unknown ρ_s and α the following system of equations:

$$\begin{cases} \rho_s A^{\alpha} = L_A - L_d \\ \rho_s B^{\alpha} = L_B - L_d \end{cases}$$
(1)

can be solved by applying the logarithm to both the equations:

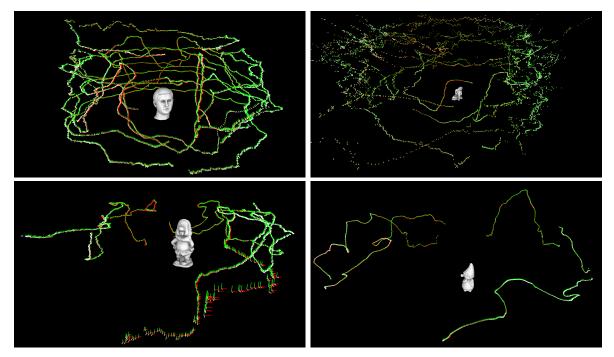
$$\begin{pmatrix}
\alpha = \frac{(\ln(L_A - L_d) - \ln(\rho_s))}{\ln(A)} \\
\alpha = \frac{(\ln(L_B - L_d) - \ln(\rho_s))}{\ln(B)}
\end{cases}$$
(2)

and by setting the equality between the two equations:

$$\frac{(\ln(L_A - L_d) - \ln(\rho_s))}{\ln(A)} = \frac{(\ln(L_B - L_d) - \ln(\rho_s))}{\ln(B)}$$
(3)

From equation 3 we compute the value:

$$\rho_s = e^{\mathsf{C}} \tag{4}$$


© 2012 The Author(s)

Computer Graphics Forum © 2012 The Eurographics Association and Blackwell Publishing Ltd. Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main Street, Malden, MA 02148, USA. where:

$$C = \frac{\ln(L_B - L_d)\ln(A) - \ln(L_A - L_d)\ln(B)}{\ln(A) - \ln(B)}$$
(5)

With the value of ρ_s we recover the value of α by solving one of the equation in the system 2.

G.Palma et al. / A Statistical Method for SVBRDF Approximation

Figure 1: *Camera path reconstructed with the registration algorithm: (Top-Left) HEAD; (Top-Right) SLEEPING BUDDHA; (Bottom-Left) DWARF; (Bottom-Right) GNOME.*

Figure 2: *Quality computation: (Left) map of the border distance from the depth discontinuities; (Left-Center) depth map; (Right-Center) dot product between the normal and the view direction; (Right) final quality.*

G.Palma et al. / A Statistical Method for SVBRDF Approximation

Figure 3: Comparison of environment maps: (Top-Left) first real environment scenario; (Top-Center) first environment scenario reconstructed from the DWARF's videos; (Top-Right) first environment scenario reconstructed from the GNOME's videos; (Bottom-Left) second real environment scenario; (Bottom-Center) second environment scenario reconstructed from the HEAD's videos; (Bottom-Right) second environment scenario reconstructed from the SLEEPING BUDDHA's videos.

© 2012 The Author(s) © 2012 The Eurographics Association and Blackwell Publishing Ltd.

G.Palma et al. / A Statistical Method for SVBRDF Approximation

Figure 4: Segmentation of the basis materials: (Top-Left) HEAD; (Top-Right) SLEEPING BUDDHA; (Bottom-Left) DWARF; (Bottom-Right) GNOME. For each image there is the rendering of the object with the diffuse color (left) and the rendering in false color of the basis materials (right).

G.Palma et al. / A Statistical Method for SVBRDF Approximation

Figure 5: HEAD: (Left) rendering; (Right) original frame.

G.Palma et al. / A Statistical Method for SVBRDF Approximation

Figure 6: SLEEPING BUDDHA: (Left) rendering; (Right) original frame.

G.Palma et al. / A Statistical Method for SVBRDF Approximation

Figure 7: DWARF: (Left) rendering; (Right) original frame.

© 2012 The Author(s) © 2012 The Eurographics Association and Blackwell Publishing Ltd.

G.Palma et al. / A Statistical Method for SVBRDF Approximation

Figure 8: GNOME: (Left) rendering; (Right) original frame.

G.Palma et al. / A Statistical Method for SVBRDF Approximation

Figure 9: Rendering of the SLEEPING BUDDHA with the "Uffizi Gallery" environment map

© 2012 The Author(s) © 2012 The Eurographics Association and Blackwell Publishing Ltd.

G.Palma et al. / A Statistical Method for SVBRDF Approximation

Figure 10: Rendering of the SLEEPING BUDDHA with the "Dining room" environment map

G.Palma et al. / A Statistical Method for SVBRDF Approximation

 $\label{eq:Figure 11: Rendering of the SLEEPING BUDDHA with the ``Pisa'' environment map$

© 2012 The Author(s) © 2012 The Eurographics Association and Blackwell Publishing Ltd.