

Image / Video Quality Assessment

Tunç O. Aydın Disney Research, Zurich

<tunc@disneyresearch.com>

Problem Definition

Subjective Quality Assessment

Figures taken from [Ferwerda 2008]

Detection

Discrimination

Scaling

Refer to: [James Ferwerda, Psychophysics 101: How to Run Perception Experiments in Computer Graphics, SIGGRAPH 2008].

+ Reliable - High cost

Objective Quality Assessment

Refer to: [Wang & Bovik, Modern Image Quality Assessment, 2008].

Generic Quality Assessment Workflow

- Mean Squared Error $MSE(x, y) = \frac{1}{N} \sum_{i=1}^{N} (x_i y_i)^2$ (MSE)
- Peak Signal to Noise $PSNR(x, y) = 10\log_{10} \frac{L^2}{MSE}$ Ratio (PSNR)
- Structural Similarity Index Metric
 (SSIM): More sophisticated, accounts for luminance contrast and structural distortions

$$SSIM(x, y) = l(\mu_x, \mu_y)^{\alpha} c(\sigma_x, \sigma_y)^{\beta} s(\sigma_x, \sigma_y)^{\gamma}$$

Limitations of Simple Distortion Metrics

Reference

Random Noise

~15% Decreased Luminance

Same MSE for all three images!

Perception of Distortions

Reference (bmp, 616K) Compressed (jpg, 48K)

Limitations of Simple Distortion Metrics, cont.

Visible difference doesn't always mean lower quality!

The Human Visual System (HVS)

Right visual field Left visua [emporal Nasal Optic chiasm Pulvinar nucleus Lateral geniculate nucleus Superior colliculus Optic radiation Primary visual cortex

- Experimental Methods of Vision Science
 - Micro-electrode
 - Radioactive Marker
 - Vivisection
 - Psychophysical Experimentation

Video Courtesy of Tobias Ritschel

Disability Glare (blooming)

Disability Glare

- Model of Light Scattering
 - Point Spread
 Function in spatial domain
 - Optical Transfer Function in Fourier Domain [Deeley et al. 1991]

Adaptation Level: 10⁻⁴ cd/m²

Adaptation Level: 17 cd/m²

Perceptually Uniform Space

 Transfer function: Maps Luminance to Just Noticeable Differences (JNDs) in Luminance. [Mantiuk et al. 2004, Aydın et al. 2008]

(3) Contrast Sensitivity

CSF(spatial frequency, adaptation level, temporal freq., viewing dist, ...)

Contrast Sensitivity Function (CSF)

SIGGRAPHASIA2011 HONG KONG

 Steady-state CSF^S: Returns the Sensitivity (1/Threshold contrast), given the adaptation luminance and spatial frequency [Daly 1993, Mantiuk et al. 2011].

(4) Visual Channels

Visual Masking Models

Masked coefficient
 Intra-channel neighborhood
 Inter-channel neighborhood

• **Example:** JPEG's pointwise extended masking:

$$R = \frac{sign(C')|C'|^{0.3}}{(1 + \sum_{K} |C'_{k}|^{0.2})}$$

C': Normalized Contrast

Generic HVS-based Quality Assessment Workflow

Visible Differences Predictor (VDP) [Daly 93, Mantiuk et al. 05, Mantiuk et al. 11], Visual Discrimation Model (VDM) [Lubin 95]

QA of Retargeted Images? HDR Tone mapping case

Local Gaussian Blur

HDR Test

HDR Reference

LDR Test

LDR Reference

(3) HDR test, LDR reference

Detection Probability

Detecting distortions

Reference

25% 50% 75% 95	% 100%

Sharpening

Blur

HDR-VDP

Detecting "types" of distortions

Reference

Sharpening

Blur

Reversal

Generic DRI Image Quality Assessment Workflow

Loss of Visible Contrast

Amplification of Invisible Contrast

Reversal of Visible Contrast

HDR Tone Mapping Evaluation

SIGGRAPHASIA2011 HONG KONG

Inverse Tone Mapping

Display Analysis

Generic DRI Video Quality Assessment Workflow

Extended Contrast Sensitivity Function

• CSF: $\omega, \rho, L_a \rightarrow S$

- ω: temporal frequency,
- *ρ*: spatial frequency,
- *L_a*: adaptation level,
- S: sensitivity.

Extended Contrast Sensitivity Function, cont.

• CSF: $\omega, \rho, L_a \rightarrow S$

- ω: temporal frequency,
- *ρ*: spatial frequency,
- *L_a*: adaptation level,
- S: sensitivity.

• CSF: $\omega, \rho, L_a \rightarrow S$

- ω : temporal
- ρ : spatial frequency, L_a : adaptation
- S: sensitivity.

Extended Contrast Sensitivity Function, derivation

Sustained and **Transient** Temporal Channels [Winkler 2005]

Temporal Channels

Sustained and Transient

Temporal Channels

Evaluation of Rendering Methods

With temporal filtering [Herzog et al. 2010]

No temporal filtering 25% 50% 75% 95% Predicted distortion map

Evaluation of HDR Compression

Medium Compression

Subjective Calibration

 Modelfest dataset at five contrast levels

Subjective Validation

- Example [Aydın et al. 2010, Čadík et al. 2010]
- Noise, HDR video compression, tone mapping
- "2.5D videos"
- LDR-LDR, HDR-HDR, HDR-LDR

Subjective Validation, cont.

(1) Show videos side-by-side on a HDR Display (2) Subjects mark regions where they detect differences

only mark DETAIL LOSS: Details that are VISIBLE in the REFERENCE

LEFT BUTTON Main, RIGHT BUTTON: Clear, MODLE BUTTON: Toggle grid

evences in the TEST VIDEO with respect to the REFERENCE VIDEO

Subjective vs. Objective Results

SIGGRAPHASIA2011 HONG KONG

Average prediction

Subjective Validation, cont.

SIGGRAPHASIA2011 HONG KONG

Stimul <u>us</u>	DRI-VQM	PDM	HDRVDP	DRIVDP
1	0.765	-0.0147	0.591	0.488
2	0.883	0.686	0.673	0.859
3	0.843	0.886	0.0769	0.865
4	0.815	0.0205	0.211	-0.0654
5	0.844	0.565	0.803	0.689
6	0.761	-0.462	0.709	0.299
7	0.879	0.155	0.882	0.924
8	0.733	0.109	0.339	0.393
9	0.753	0.368	0.473	0.617
Average	0.809	0.257	0.528	0.563

 [Čadík et al. 2010] Data available at: http://www.mpiinf.mpg.de/resources/hdr/quality

Conclusions

- A number of established metrics are available as source code or web service
 - SSIM: <u>https://ece.uwaterloo.ca/~z70wang/research/ssim/</u>
 - HDRVDP : <u>http://sourceforge.net/projects/hdrvdp/files/hdrvdp/</u>
 - DRI-IQM and DRI-VQM:

http://drim.mpi-inf.mpg.de/

- Researchers are starting using these metrics instead of user studies.
- Future directions:

- Metrics for retargeted images [Liu et al. 2011]
- Better HVS models [Mantiuk et al. 2011]
- Smarter distortion measures.

