

Retargeting Color Content: Color Issues in Tone Mapping

Alessandro Artusi

Cyprus Institute, CaSToRC, Cyprus

Introduction to Color

What is Color?

Source Light

Human Visual System

Quantifying Color

How Color is Produced?

Additive

(a)

Color Space

- Device dependent: the description of color information is related to the characteristics of a particular device
 - Set of primaries
 Technology
 Magentar White
 (0,0,1) Blue
 Cyan
 Magentar White
 (0,1,0) Green
 (1,0,0) Red
 Yellow

- Device independent: the description of color information is no dependent from the characteristics of a particular device
 - CIEXYZ, CIELab, CIELuv etc...

Chromaticity Diagram and MacAdam's Ellipses

SIGGRAPHASIA2011 HONG KONG

MacAdam's Ellipses

- contains all colors which are indistinguishable to an human observer from the color at the center of the ellipse
- the contour of the ellipse represents the just noticeable differences of chromaticity

$$x = \frac{X}{X + Y + Z}$$
$$y = \frac{Y}{X + Y + Z}$$

Color Attributes by the CIE

SIGGRAPHASIA2011 HONG KONG

• Hue

- **Perception** Saturation
 - Lightness

 Hue The degree to which a stimulus can be described as similar to or different from stimuli that are described as red, green, blue, and yellow.

Fovea

Optic Nerve

- Saturation is the colorfulness of an area judged in proportion to its brightness.
- Lightness Human vision has a nonlinear perceptual response to

Lens

Pupil

Come

luminance: The perceptual response to luminance is called lightness.

$$L^* = 116 \left(\frac{Y}{Y_n}\right)^{\frac{1}{3}} - 16 \qquad 0.008856 < \frac{Y}{Y_n}$$

Color in High Dynamic Range

SIGGRAPHASIA2011 HONG KONG

Color Ratio (Schlick 1994)

$$RGB_{out} = \frac{RGB_{in}}{L_{in}}L_{out}$$

 RGB_{in} Color Input RGB_{out} Color Output L_{in} Luminance Input L_{out} Luminance Output

Mantiuk et al.. "Color Correction for Tone Mapping", Proceedings Eurographics 2009.

Color in High Dynamic Range

SIGGRAPHASIA2011 HONG KONG

Saturation Control (Thumblin and Turk 1999)

Under-saturated colors for S=C.

Mantiuk et al.. "Color Correction for Tone Mapping", Proceedings Eurographics 2009.

Color in High Dynamic Range

SIGGRAPHASIA2011 HONG KONG

Mantiuk et al.. "Color Correction for Tone Mapping", Proceedings Eurographics 2009.

Color Rendering Pipeline (8 Bit)

Colorimetric Characterisation of a Device

Gamma – Curve

A. Neumann, A. Artusi, L. Neumann, G. Zotti and W. Purgathofer "Accurate Display Gamma Function based on Human Observation".

Color Rendering Pipeline in HDR

HDR ICC Profile

Goesele et al. "Color Calibrated High Dynamic Range Imaging with ICC Profiles."

HDR Colorimetric Camera Characterization

Gamut Mapping

Gamut vs. Tone Mapping

SIGGRAPHASIA2011 HONG KONG

 Gray axes alignment, mapping white to white and black to black

SIGGRAPHASIA2011 HONG KONG

 Gray axes alignment, mapping white to white and black to black

 Unchanged the Hue shift, will keep the overall image appearance

- Limiting out of gamut colours
 - Soft clipping can be afterwards adopted to eliminate these extremes
- Increase Image saturation
 - Destination gamut has reduced saturation
 - Helps maintaining the original chroma differences of the input Image

Gamut Mapping Pipeline

Color Space Issue

SIGGRAPHASIA2011 HONG KONG

- Gamut Mapping that preserves metric hue angle
 - No Hue shift after compression or clipping
- CIELab is suffering of non linearity in blue regions, but also in red regions

Braun and Fairchild. "Color Gamut Mapping in Hue-Linearized CIELab Color Space"

Point-wise Gamut Mapping Techniques

SIGGRAPHASIA2011 HONG KONG

Clipping

It changes colours which are outside of the destination gamut, mapping them on the boundaries of the destination gamut

- Horizontal (lines of constant lightness)
- Radial to a centre of Gravity
 - Centre of lightness axis (Constant)
 - Lightness corresponding to the Chroma Cusp (variable)

Distance in CIELab

• To the colour boundary of the destination gamut that has the smallest distance (HPMin ΔE Clipping)

Clipping

Clipping – Major Drawbacks

Erase Local Image variation (Details)

Preserve Saturation

Point-wise Gamut Mapping Techniques

SIGGRAPHASIA2011 HONG KONG

Compression

It makes changes to all the colors of the source gamut to be

accommodated into the destination gamut .

- Linear
- Sigmoid
- Knee-function

• Parametric

The behaviour change based on the shapes of the two gamut's (source and destination) at the hue angle, or it depends from use parameters. (Clipping and Compression)

Compression

Compression

Parametric

Preservation of Spatial Details

Optimization

Making use of Human Visual System Models minimize the perceived

differences between the input and output image.

• Multiscale

Re-inserts high-frequency information content in the gamut mapped image (clipped).

- Clipping loss of details
- General framework has been proposed that includes the different cases

Preservation of Spatial Details

Mantiuk et al. "Color Correction for Tone Mapping"

SIGGRAPHASIA2011 HONG KONG

Automatic estimation of desaturation (s) factor in function of contrast compression (c) (<u>non-linear color correction</u>).

$$C_{out} = \left(\frac{C_{in}}{L_{in}}\right)^{s} \underbrace{\longrightarrow}_{L_{out}} s(c) = \frac{(1+k_{1}) c^{k_{2}}}{1+k_{1} c^{k_{2}}}$$

$$s_{1=2.3892, k_{2}=0.8552}$$

s = f(c) determined based on results of perceptual experiment

Mantiuk et al. "Color Correction for Tone Mapping"

$$\begin{aligned} \text{luminance(} \ \text{C}_{\text{in}} \) &= \text{luminance(} \ \text{C}_{\text{out}} \) \\ C_{out} &= \left(\left(\frac{C_{in}}{L_{in}} - 1 \right) s + 1 \right) L_{out}^{\text{k1=2.3892, k2=0.8552}} \\ \text{Lout} \\ \text{Unchanged luminance value after color correction} \\ s(c) &= \frac{(1+k_1) c^{k_2}}{1+k_1 c^{k_2}} \\ \text{(luminance preserving solution)} \end{aligned}$$

Conclusions

- Works on high dynamic range imaging have mostly operated on luminance (lightness) information
 - some works start to appear proposing solution for color saturation, acquisition of colorimetric correct high dynamic range color values, and color appereance
- In Color Science a lot of works have been presented in the context of colorimetric characterisation, color appearance and gamut mapping on low dynamic range [0, 100]
 - Some of these works have been extended or re-used for high dynamic range applications
 - Tone mapping can bee seen as an extension or a particular case of game mapping (if we consider only the luminance information)
 - Many gamut mapping works started to analyse the details preservation on color information

Low Dynamic Range [0,100]

Acknowledgments

- Image IM2-Color (slide 2) Courtesy of Laszlo Neumann
- Material from the paper "Color Correction for Tone Mapping" Courtesy of Rafal Mantiuk
- Image Bottles (slides 12 and 15) Courtesy of Francesco Banterle
- Images (slides 18, 30 and 41) Courtesy of Ela Sikudova
- HDR Image s(skide 18) Martin Cadik

