
A framework for User-Assisted Sketch-Based Fitting of
Geometric Primitives

Davide Portelli
VCL - ISTI, Pisa

davide.portelli@gmail.com

Fabio Ganovelli
VCL - ISTI, Pisa

fabio.ganovelli@isti.cnr.it

Marco Tarini
Univ. dell’Insubria, Varese

marco.tarini@isti.cnr.it

Paolo Cignoni
VCL - ISTI, Pisa

paolo.cignoni@isti.cnr.it

Matteo Dellepiane
VCL - ISTI, Pisa

matteo.dellepiane@isti.cnr.it

Roberto Scopigno
VCL - ISTI, Pisa

roberto.scopigno@isti.cnr.it

ABSTRACT
In this paper, we present a user-assisted sketch-based
framework to extract hi-level primitives (e.g. columns
or staircases) from scanned3D models of an architec-
tural complex. The framework offers a unified level
of representation of the hi-level primitives, so that new
types of primitives can be easily added as plug-ins to the
main engine. Primitives are fitted with a user-assisted
procedure: the user suggests the approximate location
of the primitive by means of simple mouse gestures,
sketched over a rendering of the model. The viewpoint
that was selected prior to the sketching is also taken in
consideration as hints on the orientation and size of the
primitive. The engine performs a GPU assisted fitting
and the result is shown in real time to the user. Ad-hoc
gestures cause the system to add and fit groups of prim-
itive in one go (e.g. a column complex, or a sequence
of windows).
Keywords: 3D segmentation, fitting geometric prim-
itives

1 INTRODUCTION
Before the advent of scanning devices, 3D digital mod-
els of architectural buildings were mainly obtained via
manual modeling. This operation is typically guided
by 2D data, like sections and prospects. A modeler
usually proceeds by decomposing the structure in a set
of primitives, then “builds" the model by adding the
primitives.
The increasing availability of 3D range scanning
devices, the development of software increasingly
efficient and user-friendly for the creation and manip-
ulation of complex 3D digital models and the drop of
the scanning technology costs, are the main reasons
of the recent fast proliferation of scanning campaigns
for the acquisition of the shape of real world objects.
Along with other application fields, 3D range scanning
[CM02] is increasingly used in architecture.
The result that can be obtained using 3D scanning,
organized as clouds of points or as triangle meshes,
is a far more accurate description of the actual shape
of the building or the faćade then the one obtained
with manual modeling, but it does does not carry any

information on what the object or its parts are.
The possibility to decompose an architectural model in
a set of higher level primitives (which are very often
repeated on the same faćade) is extremely important for
a number of possible applications: analysis, archival,
comparison with other models. This would combine
the flexibility of direct 3D modeling to the accuracy
of 3D scanning. The primitive extraction can also be
applied to different approaches aimed at recovering the
3D information of buildings [BSZF99, SB03].
In this paper we present a framework for a user-assisted
extraction of geometric primitives. The intervention of
the user is limited to a few sketches over a rendering of
the low-level model. The sketches roughly define the
size, orientation and position of the intended primitive.
The approach is robust with respect to incomplete
geometry, and is also capable automatically identifying
and extract repeated instances of a single primitive. As
a result, the user can decompose a complex 3D models
in a few minutes, without the need of picking accurate
positions, and obtain good results.
The next subsections will briefly review several state-
of-the-art automatic and semi-automatic approaches
for primitive fitting. Then, the proposed framework
will be shown. A discussion on the obtained result will
be presented before the conclusions.

2 RELATED WORK
The literature on reverse engineering from 3D data is
vast. In this section we will only give a brief overview
of the approches more closely related to our domain.
We will subdivide the approaches in segmentation ap-
proaches and fitting approaches. In the first class we
put the approaches for finding low level features, such
as lines, planar regions or high curvature points in the
3D dataset. These methods do not aim to give the in-
formation about the nature of an object, instead they
try to convert a raw geometric description (i.e. a point
cloud or a triangles mesh) into a more abstract descrip-
tion. Usually these techniques rely on on discrete local
curvature operators to detect features [OBS04, WB01,
HHW05, CSAD04], the biggest challenge being mak-
ing the algorithm robust to geometrical noise. Extract-

1

ing features from an irregular 3D point cloud or from
triangle mesh produced by 3D scanning is made dif-
ficult by the inherent ambiguities of the task as well
as by the presence of geometrical noise, holes in the
model, and other inconsistencies. Once basic geomet-
ric features such as lines and planes have been found,
they can grouped to describe higher level structures.
In [SWWK07] this is done by creating a graph of re-
lations where sub parts of the graph define structural
elements and arcs describe the constraint between ele-
ments. In the class of fitting approaches we place those
methods which use parametrized description of higher
level primitives and try to ”place“ them in subparts of
raw data by means of minimizing an error function.
The function being minimized can be defined ad hoc
for a given type of primitive (e.g. planes, cones, cylin-
ders) [MLM01, Ben02]. In the general case, however,
it consists in some form of distance between the sur-
face of the primitive being fitted and the real model.
In [USF08] the authors give a GML parametric de-
scription for the model being fitted and the minimiza-
tion performs the fitting using the given parameters.
In [PMW∗08] the case of repeated regular structure in
manufactures or natural objects is studied, such as a se-
ries of windows or a snow flake. The approach uses
a sequence of operation consisting of partitioning the
object, finding a set of transformations between parts
and clustering them to extract geometric relations in the
model.

3 OUR FRAMEWORK
Our framework falls in the group of fitting approaches.
Rather than trying a fully automatic approach, we aim
at reducing user intervention down to few mouse ges-
tures. The gestures are used to reduce the search do-
main the the minimization required by the fitting pro-
cess, so to avoid the most computationally demanding
phase which is often carried out with RANSAC based
algorithms. Figure 1 shows the steps required for the
user to identify and fit a set of 5 columns. The user
selects a view of the 3D raw dataset by manipulating
a mouse-controlled trackball. Then he perform a sign
over the current rendering with the mouse, as shown in
Figure 1-(a). With this information a column shape (in
this case, a trunk of cone) is fitted over the 3D dataset
– the surface shaded in red in Figure 1-(b); once the
first column has been fitted the user may perform a sec-
ond gesture to indicate that there is a series of similar
columns, as shown Figure 1-(c); those columns are au-
tomatically fit (also see attached video).

Our main concern is to make the system easily ex-
tendable, so that the process of adding new types of
primitives is easy and the system is not tied to a prede-
fined set of primitive types. The fitting problem is ap-
proached as a generic minimization problem. All prim-
itive types are defined likewise as a parametric shape

function Sh, which takes as input a variable amount of
intrinsic and extrinsic parameters, and returns in output
a set of 3D points. More precisely, Sh(x1, . . .xn,RT) =
{p1, . . . , pm}, where m is the number of produced sam-
ples on the surface, and n is the number of scalar in-
trinsic parameters, and RT is a roto-translation matrix,
or extrinsic parameters, which specify the location in
space of the shape. Specification of a primitive type
also include an interval for each intrinsic parameter.
Note that choosing to express the shape as a parametric
point set does not allow to exploit non geometric infor-
mation that we may know about the primitive. On the
other hand it gives generalization of the primitive de-
scription and allow us to write a extendable framework.

While any primitive type has the same extrinsic pa-
rameters, the intrinsic parameters vary from type to
type, both in number and in range of values.

For example the primitive type Column is defined by
the shape function:

Column(rbottom,rtop, len,RT)

where rbottom and rtop are the two radii of trunked cone
with length len.

The minimization problem can now be defined inde-
pendently of the type of the primitive being fitted:

min Err(Sh(x1..xn,RT),M)
xi ∈Constr(i) (1)

where Err is a measure of the difference between the
primitive and the scanned model and Constr(i) is the
constraint defined for the parameter i (for example in
the case of the column we have 0 < rbottom,rtop, len).

Figure 2 show a scheme of the whole process. The
user select a shape and perform a mouse gesture so pro-
viding the input for the module that computes a first
estimation of the parameters. Then the minimization
process start by sampling the surface generated by the
parameters, computing its distance from the model and
updating the parameters to decrement the error, until a
satisfactory fitting is found.

Being that our method relies also on user interven-
tion, it may reminds to many user assisted techniques
for segmentation of medical datasets for which a vast
literature is available (see [PXP00] for a recent survey).
However there are important distinctions both in finali-
ties and in adopted strategies. The first difference is that
for architectural manufactures we do not need a tool for
supporting the recognition of a shape, as usually is for
medical images, but only a tool for converting a raw
description (a point cloud) in a structured one (union
of architectural elements). Many techniques in medical
segmentation are based on energy minimization meth-
ods but the exploitation of a known parameterization of
the object to segment brings less advantages than in our
case for the simple reason that human organs are much

2

Figure 1: application example of fitting of 5 columns.

more difficult to parametrize than architectural build-
ings.

3.1 From gesture to parameters estima-
tion.

The goal of using the mouse gesture is to reduce the
search space for in the minimization process. However,
in order to be effective, the gesture must be simple to do
and not necessarily precise. The first task is to interpret
a 2D mouse gesture in a selection of a 3D subpart of the
original 3D data (mesh or point-cloud).

Figure 3.(a) shows the example of the column where
the sign of the mouse is partly over the column (shaded
in red) and partly over the background (shaded in
green). In Figure 3 we see how the selected points are
distributed in space.

We compute the distribution of the distance of these
points from the viewer and use it to remove what we
consider to be outliers (see Figure 3.(c)), in the assump-
tion that the majority of points will be coherently on
the part of the dataset that corresponds to the primitive
being fitted. Then we take the bounding box of these
points to infer an initial estimation of parameters for the
shape. In the most general case, i.e. with no assump-
tion neither on the type of dataset nor on the type of
primitive, the only information that we could use from
the bounding box is its volume, so we can solve a min-
imization problem:

min ‖Volume(Sh(X0, . . . ,xn,RT)−Volume(BBox)‖

and use the solution as the initial estimation for the
problem 1. The computation of a solution is made less
computationally intensive by taking in account the view
transformation that was chosen by the user in order to
have a suitable view of the intended feature:

• the view transformation selected by the user before
he performs a mouse gesture is assumed to be such
that the feature has a natural orientation (e.g. the col-
umn is not upside down in screen space);

• similarly, the intended instance of the primitive is
oriented, in view-space, as facing the camera.

taking advantage of these reasonable assumptions, we
infer a correspondence between the frame centered in
the center of the bounding box and oriented with its
sides, and the frame where the shape is defined for the
initial to obtain the parameters estimation.

3.2 Minimization
At a first glance, we could take the function to min-
imize, referred as Err in the problem 1 as the sums
of Euclidean distance between the primitive and the
model. Unfortunately this is not enough, because we
may have architectural elements which subparts are
also instances of the same type of element. For exam-
ple a portion of a plane is also a plane and a portion
of a column is also shaped as a column. Of course
this also depends on the definition of the primitive
types. Consider for example how a column including
a basement and the capital we would not have these
ambiguities (however that primitive type could not be
fitted, for example, over a 3D point cloud featuring a
broken column, a case for which we would need an ad
hoc primitive).

For these reasons, we aim at the maximal portion of
dataset that matches with the primitive. Therefore we
redefine our error function as:

Err(Sh,M)=
1

Area(Sh)

j<k bArea(Sh)c

∑
j=0

max(t,wi D(si,M))2

(2)
where si, i = 0 . . .k is a sampling of the surface of the
primitive, D(si,M) is a measure of the distance from
si to the model M, t is the minimum error that is as-
signed to each sample to smooth out the contribution
due to the the noise of the scanned model and wi is a
[0,1] weight associated with the ith sample that is used
to discard outliers that are created is the model misses
portion of surface that are represented in the shape (e.g.
a column with a missing piece). Essentially Err takes
into account the distance between the primitive and the
model and the area of the shape and decreases both if
the distance decreases and if the area grows. Note that
the distance measure is squared in order to express both
parts of the fraction in the same scale, and that the num-
ber of samples is proportional to the area so that each
sample accounts approximately for a constant area.
Computing D(si,M). We can define the distance func-
tion as the Euclidean distance to the closest point on M,

3

Figure 2: A scheme of the fitting framework

Figure 3: From mouse gesture to initial parameters.

just like in classic IPC algorithm [BM92] D. However,
since we have an estimation of the normals both for the
shape and for the model, we can achieve better results
including the normals in the estimation and defining the
distance as:

D(si,M) = min D(si, pi), pi ∈M (3)

where:

D(si, pi) = E(si, pi)+
α (1− ~n1 ~n2)2β

E(si, pi)+1
(4)

the function D is simply the Euclidean distance E plus
a positive bounded contribution En (the right part of
the sum) which accounts for the normals in the distance
computation. The expression is formulated so that the
weight of the normal only comes into play where the
two points are close to each other and the magnitude of
their contribution is proportional to the angle between
them. It can be easily seen that the maximum contri-
bution (found when E(si, pi) = 0 and ~n1 ~n2 = −1) is
α 22β . We can set β to determine how fast the con-
tribution of this term grows and α to relate the term to
the density of the dataset. The value of α is important
because the contribution of the term must be propor-
tioned to the density of the sampling to affect the min-
imization. Typically a good choice is to set it to the
average inter point distance. So if, say, β = 2 and the
average inter point distance is 0.5, we will have a term
that may increase the distance estimation from the Eu-
clidean value at most by 0.5 22 2 = 8, when points with

Figure 4: A plot of the distance function for β = 2,
α = 0.5 and several values of angle between the points’
normal.

opposite normals coincide. Figure 4 shows a plot of
En for different values of the product ~n1 ~n2 and β = 2
where this behavior can be observed.

Al thought the distance function En is a 5D function,
the closest point on M with respect to En can be found
using only data 3D space indexing data structures for
Euclidean distance by:

1. finding the closest point pi with respect to the metric
E

2. taking the closest point with respect to D among
those which euclidean distance is less than D(si, pi).

It is easy to see that the algorithm returns the closest
point w.r.t. D, because

E(si, p′)> D(si, pi)→D(si, p′)= E(si, p′)+En(si, p′)> D(si, pi)

Minimization cycle. At this point we have defined
both the parameters and the function to minimize and
may apply any non linear minimization algorithm to
find a hopefully optima solution. However, we exploit

4

the knowledge of a closed form solution for the extrin-
sic parameters alone [BM92] and decompose the mini-
mization cycle in three steps:

1 for each sample in the shape Sh, find the closest
point in the model

2 find the rototranslation that minimizes the squared
distances between all the pairs (only explicit param-
eters involved)

3 iterate a non linear minimization procedure (only
implicit parameters involved)

- if Err(Sh,M) is under a user selected threshold re-
turn, otherwise goto 1

We used both Levemberg-Marquardt [Lou09] and
Newuoa [Pow08], with similar results.

4 EXTENDING TO MULTIPLE IN-
STANCES

When an architectural element has been fitted, it is
likely that other similar elements (i.e. of the same type
and size) are present. Examples are the columns, the
steps of a stair of a series of window. Therefore we
wanted to spare to the user to repeat the same mouse
gesture for all the elements an simply make a single
gesture which says here there are other elements of this
type. As shown in Figure 1.(c), the gesture required is
two mouse clicks to define a line segment. From this
gesture the initial parameters for all the other columns
are find and the minimization process just described is
launched on each instance.

4.1 From gesture to parameters estima-
tion.

Since we have fitted the first element, we already have
the estimation of the initial implicit parameters for the
other instances of the same type of element. The user
may define a segment (seg(t)x,seg(t)y to indicate where
these other instances are, as shown in Figure 6. There-
fore the information we need to extract is how many
other elements there are and, for each one of them, an
estimation of the extrinsic parameters. Furthermore we
can exploit the fact the in architectural manufactures re-
peated elements usually differ by a translation but are
oriented in the same way and reduce the missing ex-
trinsic parameters to a translation.

In principle we could sample the segment and, for
each sample, launch the optimization taking the projec-
tion of the sample onto the scene as a starting point for
translation. Unfortunately the minimization process re-
quires few seconds to complete and therefore we need
to reduce the set of candidates translations.

We harness the rasterization process in order to
quickly reduce the candidate translations. More pre-
cisely we exploit the z-fighting artifact. The z-fighting

Figure 5: A schematic representation of z-fighting
quantification

is the rendering artifact that happens when the depth
values of the rasterization of different polygons falls
in a range of values close or under the precision of
the z-buffer, so that the pixel are evenly written by the
conflicting polygons.

The idea is that if we consider the 3D point
(seg(t ′)x,seg(t ′)y,seg(t ′)z) where (seg(t ′)x,seg(t ′)y are
2D points belonging to the segment and seg(t ′)z is the
projection on the model and render an instance of the
shape translated by seg(t ′) together with the scene, the
presence of z-fighting indicates a superimposition of
the rendered shape with the model, at least from the
view used to draw the segment.

Normally the z-fighting is a symptom of a weakness
of the geometric representation or of the rendering al-
gorithm, therefore if not quantified but only, possibly,
avoided. In our approach, however, the z-fighting is an
estimation of matching between a shape and the model
and therefore we are interested in quantifying it.

Figure 5.(a) shows a schematic example representing
the section of a column in the model (shaded in blue)
and a section of the shape being fitted (shaded in red).
Since they are perfectly superimposed, we see part of
the pixels red and part blue, in the proportion which is
essentially random and cannot be used directly to quan-
tify the superimposition. However, if we apply a small
displacement of the shape towards the viewer we see
that all the pixels are red and, vice versa, displacing
the shape away from the viewer the pixels will all be
blue. In other words, the more the shape and the model
are superimposed, the more the two renderings with the
displaced shape will be different. Therefore we quan-
tify the z-fighting as:

Z f ight(Sh,M,Ti) =
‖FSh(+ε)−FSh(−ε)‖

FSh

where FSh(+/− ε) is the number of fragments belonging
to the shape when is displaced by +/− ε and FSh is the
number of fragments of the shape Sh alone. The upper
half of Figure 6 shows two examples of a fitted shape,
a column and a step, and the segments defined by the
user, while in the lower part are shown the plots ob-
tained by setting t (the parameter of the segment with
range [0,1]) as ascissa and (Sh,M, t), so (Sh,M,0.5) is
the value of the z-fighting when the shape is placed

5

Figure 6: Example of estimation of extrinsic parame-
ters from mouse gestures for a series of columns and a
stairs.

on the projection of the middle point of the segment.
Quantifying the z-fighting is very efficient because it
requires only one rendering of the model and two ren-
derings of the shape for each pixel of the segment,
while the number of fragment for the displaced shape
are counted by means of the hardware occlusion query.

Note that, being based on the rasterization, this tech-
nique is dependent on the window resolution, therefore
it will be generally more effective with higer resolu-
tions, simply because more translations are evaluated.
It should be clear that the resolution to which we per-
form the zfighting computation can be different (higher)
that the resolution used by the application for rendering.

5 DEFINING NEW PRIMITIVE TYPES
As stated in Section 3, our framework is not restricted to
a given set of primitives but uses an abstraction layer the
sees a primitive as a sampling of its surface dependent
on a set of implicit parameters. Therefore a developer
user may add new type of primitive by deriving from a
base class Primitive and implementing two methods:

s t r u c t MyPrimitiveType : p u b l i c Primitive{
i n t N_params () ; / / r e t u r n s t h e number o f t h e i m p l i c i t p a r a m e t e r s o f t h e←↩

p r i m i t i v e

points Samples (f l o a t * params) ; / / r e t u r n s a s a m p l i n g of t h e s u r f a c e ←↩
wi th t h e p a s s e d p a r a m e t e r s

} ;

6 RESULTS AND DISCUSSION.
We tested our framework implementing a few types of
primitives, summarized in Table 1.
We fitted the primitives to a scanned model of the Dome
of Pisa and reported the timing for various runs in Ta-
ble 2. Some of the runs are related to the figures we

Name . n.params. meaning
Column 3 bot. rad., top rad., len.
SquareColumn 3 width, depth, leng.
Stap 3 width, depth, length
Arch 3 radius, angle, depth
Window 3 width, height,depth

Table 1: A few primitives defined to test the framework.

fig n. pts nI nM extr.(s) intr.(s) tot.
2M 1 1 53 4.9 58.7

1 1.5M 5 1+1 132 18.5 1.51m
309K 3 3 21.4 16.3 37.82
122K 1 1 1.4 0.34 1.78
226K 1 1 1.7 0.6 2.39

7(up) 730K 5 1+1 57.7 4.7 62.5
7(bt) 200K 4 4 12.4 0.43 12.8

Table 2: Time for fitting the primitives. n. pts: num-
ber of points of the model included in the user hint, nI:
number of primitives fitted,nM: numbers of mouse ges-
tures, extr. intr. time spent for minimization of ex-
trinsic and intrinsic parameters, respectively, tot.: total
time

used in the paper, in which case a reference is reported
in the first column of the table. The second columns re-
ports the size of the portion of the model hinted by the
user with the gesture and the third the number of prim-
itives found with the run. The last three columns re-
port the computation time. Note that the time for mak-
ing the gestures are not reported in this table, since the
experiments have been run only by an expert user and
therefore not very meaningful. We took the number of
mouse gestures as a measure of the user effort.

The table says that, thanks to the replication gesture,
5 architectural elements have been found with 2 ges-
tures (second and sixth row), while where the replica-
tion is not used we need a mouse gesture per element,
as for the arches refered in the last row. Conversely, in-
dicating manually each and every element gives better
starting points for the minimization and therefore the
computation time are lower.

Since we performed minimization by alternating
minimization of extrinsic parameters, for which we
have a closed form solution, and extrinsic parameters,
the time spent on each one is reported separately. The
result may appear surprising at first, because the easiest
side of the problem, i.e. finding the rototranslation
between two sets of points, is actually the most expen-
sive, in some cases almost by an order of magnitude.
On the other hand, we must consider that the extrinsic
step is performed many more times, in that we solve
a mesh alignment problem for each iteration. It goes
without saying that tweaking the thresholds of the
minimization algorithms we may obtain different ratios
between the two timings, we simply tuned their values
to have robust fitting in reasonable time. The time for

6

Figure 7: Above: example of selection of stair steps:
(a) mouse gesture for the first step (b) fitting (c) mouse
gesture for replicating the fitting (d) result. Below: final
results for a set of arcs.

the analysis of the mouse gestures are not reported
explicitly since they amount to few milliseconds both
for the single primitives than for replication with the
z-fighting computation.

Figure 8: Fitting of columns and arches. (a) results
from [USF08] (b) results of our framework on a sim-
ilar model.

7 CONCLUSIONS
In this paper we presented a framework for user assisted
fitting of geometric primitives on scanned architectural
models. The main advantage of our framework is the
generalized description of the primitive to fit that allows
to include new type of primitive with minimal effort.
We also devised efficient and practical solutions for en-
abling the user to hint the approximate position of the
primitives, for improving the assessment of primitive
models distance with a novel measure and for quan-
tifying the superimposition of primitive and model by
exploiting the rasterization hardware. Although requir-
ing user assistance is in general a drawback, we made
this choice motivated by two facts: 1) For a human it is
very easy to indicate where an architectural component
is, while is much more difficult to manually superim-
pose the CAD model of a component on the raw data;
conversely, the analysis of raw data to locate architec-
tural components is computationally time consuming
while the minimization for finding the exact placement
is an efficient process. 2) The process to digitize and
entire building still take many man-hours and the re-
verse engineering is done once for all in a fraction of the
time required for the rest of the scanning pipeline. In
other words the little interaction used in this approach
is hardly the bottleneck of the whole process.

From the work carried out so far, we can envisage at
least two independent improvements.
The first one is to exploit more deeply the z-fight quan-
tification to define a faster minimization algorithm only
based on the rendering and therefore taking advantage
of the rasterization hardware.
The second one is to derive the parametric primitive di-
rectly from a known model, that would allow a non-
developer to define new type of primitives. The idea
is that the user could provide a sample of the primitive
as a geometric model (from a CAD or 3D scanning)
and we should derive a parametric description of it, ei-
ther automatically or providing a tool to do it. In this
manner we could include complex shapes for which to
find a parameterization is too complicated. With some
approximation this would allow to include artifacts as
statues when if they are copies of statues for which the
digital counterpart is available.

ACKNOWLEDGEMENTS
The research leading to these results has received fund-
ing from the EG 7FP IP “3D-COFORM” project (2008-
2012, n. 231809).

REFERENCES
[Ben02] BENKO P.: Constrained fitting in reverse

engineering. Computer Aided Geometric
Design 19 (March 2002), 173–205.

7

[BM92] BESL P. J., MCKAY N. D.: A method for
registration of 3-D shapes. IEEE Trans-
actions on Pattern Analysis and machine
Intelligence 14, 2 (Feb. 1992), 239–258.

[BSZF99] BAILLARD C., SCHMID C., ZISSERMAN
A., FITZGIBBON A.: Automatic line
matching and 3d reconstruction of build-
ings from multiple views. In ISPRS Con-
ference on Automatic Extraction of GIS
Objects from Digital Imagery (Munich,
1999), pp. 69–80.

[CM02] COLOMBO L., MARANA B.: 3d building
models using laser scanning. GIM - Ge-
omatics Info Magazine 16, 5 (2002), 32–
35.

[CSAD04] COHEN-STEINER D., ALLIEZ P., DES-
BRUN M.: Variational shape approxima-
tion. ACM Transactions on Graphics 23
(August 2004), 905.

[HHW05] HILDEBRANDT K., HILTHIER K.,
WARDETZKY M.: Smooth feature lines
on surface meshes. In Symposium on
Geometry Processing (2005), pp. 85–90.

[Lou09] LOURAKIS M. I. A.: Levenberg-
Marquardt nonlinear least squares algo-
rithms in C/C++. Online, Apr. 2009.

[MLM01] MARSHALL D., LUKACS G., MARTIN
R.: Robust segmentation of primitives
from range data in the presence of geo-
metric degeneracy. IEEE Trans. Pattern
Anal. Mach. Intell. 23, 3 (2001), 304–314.

[OBS04] OHTAKE Y., BELYAEV A., SEIDEL H.-
P.: Ridge-valley lines on meshes via im-
plicit surface fitting. ACM Trans. Graph.
23, 3 (2004), 609–612.

[PMW∗08] PAULY M., MITRA N. J., WALLNER J.,
POTTMANN H., GUIBAS L.: Discovering
structural regularity in 3D geometry. ACM
Transactions on Graphics 27, 3 (2008),
#43, 1–11.

[Pow08] POWELL M. J. D.: Developments
of NEWUOA for minimization without
derivatives. IMA Journal of Numerical
Analysis 28, 4 (Oct. 2008), 649–664.

[PXP00] PHAM D. L., XU C., PRINCE J. L.:
A survey of current methods in medical
image segmentation. In Annual Review
of Biomedical Engineering, vol. 2. 2000,
pp. 315–338.

[SB03] SCHINDLER K., BAUER J.: A model-
based method for building reconstruction.
In First IEEE International Workshop on
Higher-Level Knowledge in 3D Modeling
and Motion Analysis (2003), pp. 74–82.

[SWWK07] SCHNABEL R., WAHL R., WESSEL R.,
KLEIN R.: Shape Recognition in 3D Point
Clouds. Tech. Rep. CG-2007-1, Univer-
sität Bonn, May 2007.

[USF08] ULLRICH T., SETTGAST V., FELLNER
D. W.: Semantic fitting and reconstruc-
tion. JOCCH 1, 2 (2008).

[WB01] WATANABE K., BELYAEV A. G.: Detec-
tion of salient curvature features on polyg-
onal surfaces. Comput. Graph. Forum 20,
3 (2001).

8

