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Figure 1: Left: rendering a BlockMap with SpiderGL. Center: architecture of SpiderGL. Right: MeShade: a SpiderGL-based tool for shaders
authoring.

Abstract

Thanks to the WebGL graphics API specification for the JavaScript
programming language, the possibility of using the GPU capabili-
ties in a web browser without the need for an ad-hoc plug-in is now
coming true. This paper introduces SpiderGL, a JavaScript library
for developing 3D graphics web applications. SpiderGL provides
data structures and algorithms to ease the use of WebGL, to define
and manipulate shapes, to import 3D models in various formats, to
handle asynchronous data loading. We show the potential of this
novel library with a number of demo applications. Furthermore, we
introduce MeShade, a SpiderGL-based web application for shader
material editing from within the web browser, which produces all
the code needed for embedding interactive 3D model visualization
capabilities inside web pages and online repositories.

1 Introduction

The hardware and software technologies for delivering 3D content
have been constantly improving over these latest years. First
of all, current off-the-shelf GPU’s are now powerful parallel
computers which may carry out many of the computer graphics
tasks, lightening the load of the CPU so that less performant,
interpreted languages, such as JavaScript, are up to the job of
executing the CPU side of the algorithms. Secondly, the execution
of JavaScript has dramatically sped up in the latest generation
of web browsers thanks to novel just-in-time compilers such as
TraceMonkey [Mozilla 2010], V8 [Google Labs ] and Squir-
relFish [Apple Corps. ]. Finally, API’s such as O3D [Google Labs
2009] or, more recently, WebGL [Khronos Group 2009b] make the
GPU controllable by JavaScript, thus providing the link between
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the web browser and the GPU.

WebGL in particular is now a reference point for 3D graphics, for
it is a Khronos specification of JavaScript bindings to OpenGL and
OpenGL|ES 2.0, and it is being included in the next release of al-
most all the main web browsers (Firefox, Chrome, Safari).

It is easy to see how these changes will bring closer web developers,
which are more and more interested in learning 3D graphics and CG
developers, which will try to deploy their algorithms to less power-
ful platforms. The question is now what still separates a compiled
C++ from a JavaScript application with respect to CG algorithms.
One obvious answer is execution speed, but there are other gaps to
be filled:

• Asynchronous content loading: many CG algorithms
make intensive use of multithreading for asynchronous
(down)loading of textures or geometry data from different
cache levels. This is vital to avoid the application to freeze
while waiting for a texture to be loaded from RAM, disk or
even a remote database to GPU. On the other hand JavaScript
does not officially support multithreaded execution.

• Shape data loading from file: there are many file formats for
3D models and as many C++ libraries to load them [CGAL
Project ; VCG ; RWTH ]. JavaScript includes a series of pre-
defined types of objects for which the standard language bind-
ings expose native loading facilities (i.e. the Image object),
but such bindings for 3D models have yet to come.

• Math: linear algebra algorithms for 3D points and vectors are
very common tools for the CG developer, and a large set of
dedicated libraries exists for C++ and other languages. Al-
though many JavaScript demos for mathematical algorithms
can be found just browsing the web, a structured library with
the specific set of operations used in CG is still missing.

• WebGL wrapping: WebGL specification is very similar to
OpenGL|ES 2.0, which means that there are significant
changes w.r.t. OpenGL, for example there are no matrix or at-
tribute stacks and there is no immediate mode. Although these
choices comply to the bare-bones philosophy of OpenGL|ES
2.0, they also imply incompatibility even with OpenGL 3.0,
which, for example, still provides matrix stack operations.

SpiderGL is a JavaScript library designed to fill these gaps: it ex-



tends JavaScript by including geometric data structures and algo-
rithms and wraps their implementation towards WebGL. SpiderGL
was designed keeping in mind three fundamental qualities:

• Efficiency: With JavaScript and WebGL, efficiency is not only
a matter of asymptotic bounds on the algorithms, but the abil-
ity to find the most efficient mechanism to implement, for
example, asynchronous loading or parameters passing to the
shader programs, without burdening the CPU with respect to
a bare bone implementation;

• Simplicity and Short Learning Time: Users should be able to
reuse as much as possible of their former knowledge on the
subject and take advantage of the library quickly. For this
reason SpiderGL carefully avoids over-abstraction: almost all
of the function names in SpiderGL have a one to one cor-
respondence with either OpenGL or GLU commands (e.g.
sglLookAt), or with geometric/mathematics entities (e.g.
SglSphere3, SglMeshJS).

• Flexibility: SpiderGL does not try to hide native WebGL
functions, instead it provides higher level functionalities that
fulfill the most common needs of the CG developer, who can
use SpiderGL and WebGL calls almost seamlessly.

The contribution of this paper is twofold:

• It introduces SpiderGL to the Computer Graphics and Web
community

• It provides a number of working and publicly available appli-
cations developed with SpiderGL, among which MeShade: an
online application for deploying 3D models on the Web with
customizable material.

The rest of this paper is organized as follows: Section 2 briefly
summarizes the state of the art on this subject while Section 3 illus-
trates the SpiderGL library, focusing on its organization and char-
acteristics. Section 4 shows a few practical uses and applications
developed with SpiderGL, while Section 5 details MeShade. Con-
clusions and future work conclude the paper in Section 6.

2 3D Graphics and the Web

The delivery of 3D content through the web comes with a consid-
erable delay with respect to other digital media such as text, still
images, videos and sound. Just like it already happened for com-
modity platforms, 3D Computer Graphics is the latest of the abili-
ties acquired by the web browsers. The main reason for this delay
is likely the higher requirements for 3D graphics in terms of com-
putational power.
In the following we summarize the technologies that have been de-
veloped over the years.

The Virtual Reality Modeling Language (VRML) [Raggett 1995]
(then superseded by X3D [Don Brutzmann 2007]) was proposed as
a text based format for specifying 3D scenes in terms of geometry
and material properties, while for the rendering in the web browser
it is required the installation of a platform specific plug-in.

Java Applets are probably the most practiced method to add custom
software components, not necessarily 3D, in a web browser. The
philosophy of Java applets is that the URL to the applet and its
data are put in the HTML page and then executed by a third part
component, the Java Virtual Machine. The implementation of the
JVM on all the operating systems made Java applets ubiquitous and
the introduction of binding to OpenGL such as JOGL [JOG ] added
control on the 3D graphics hardware. A similar idea lies behind
the ActiveX [ACT ] technology, developed by Microsoft since
1996. Unlike Java Applets, ActiveX controls are not bytecode but

dynamic linked Windows libraries which share the same memory
space as the calling process (i.e. the browser), and so they are
much faster to execute.
These technologies allow to incorporate 3D graphics in a web page
but they all do it by handling a special element of the page itself
with a third party component.

More recently, Google started the development of a 3D graphics
engine named O3D [Google Labs 2009]. O3D is also deployed as a
plug-in for browsers, but instead of a black-box, non programmable
control, it integrates into the browser itself, extending its JavaScript
with 3D graphics capabilities relying both on OpenGL and DirectX.
O3D is scene graph-based and supplies utilities for loading 3D
scenes in several commonly used formats.
WebGL [Khronos Group 2009b] is an API specification produced
by the Khronos group [Khronos Group 2009a] and, as the name
suggests, defines the JavaScript analogous of the OpenGL API for
C++. WebGL closely matches OpenGL|ES 2.0 and, most impor-
tant, uses GLSL as the language for shader programs, which means
that the shader core of existent applications can be reused for their
JavaScript/WebGL version. Since WebGL is a specification, it is
up to the web browsers developer to implement it. At the time of
this writing WebGL is supported in the nightly build versions of
the most used web browsers (Firefox, Chrome, Safari), and a num-
ber of JavaScript libraries are being developed to provide higher
level functionalities to create 3D graphics applications. For exam-
ple WebGLU [DeLillo 2009], which is the WebGL correspondent
of GLU [Khronos Group ], provides wrappings for placing the cam-
era in the scene or for creating simple geometric primitives, other
libraries such as GLGE [Brunt 2010] or SceneJS [Kay 2009] uses
WebGL for implementing a scene graph based rendering and ani-
mation engines.

3 The SpiderGL Graphics Library

Most of the current JavaScript graphics libraries implement the
scene graph paradigm. Although scene graphs can naturally rep-
resent the idea of a “scene”, they also force the user to resort to
complex schemes whenever more control over the execution flow
is needed. There are several situations in which fixed functionali-
ties implemented by scene graph nodes cannot be easily combined
to accomplish the desired output, thus requiring the developer to
alter the standard behavior, typically by deriving native classes and
overriding their methods or, in some cases, by implementing new
node types. In these cases, a procedural paradigm often represents a
more practical choice. Also, scene graphs contain a large codebase
to overcome the limitations of strongly typed imperative program-
ming languages, which is no more required in dynamic languages
such as JavaScript.

3.1 SpiderGL Architecture

SpiderGL is composed of five modules, distinguished by color in
Figure 2:

• GL: Access to WebGL functionalities. The GL module con-
tains a low-level layer, managing low-level data structures
with no associated logic, and a high-level layer, composed of
wrapper objects, plus a series of orthogonal facilities.

• MESH: 3D model definition and rendering. This mod-
ule provides the implementation of a polygonal mesh
(SglMeshJS), to allow the user to build and edit 3D mod-
els, and its image on the GPU side (SglMeshGL). SpiderGL
handles the construction of a SglMeshGL object from a
SglMeshJS.



Figure 2: A diagram of the SpiderGL architecture.

• ASYNC : Asynchronous Content Loading.

• UI : User Interface.

• Space: Math and Geometry utilities.

GL: Constructors

WebGL specifications expose an extremely low level API, accord-
ing to the base philosophy of being a lightweight, highly config-
urable and high performances graphics infrastructure. However, a
series of typical usage patterns can be extrapolated from most of
the 3D graphics applications. As an example, the sequence of com-
mand for creating a shader program or framebuffer object are al-
most always the same block of code. The GL module exposes a
number of easy-to-use creation functions that hide the most com-
mon operations and parameters to the developer.
However, since the user should be able to control all the low level
details which are exposed by the WebGL standard, SpiderGL al-
lows to override default parameters with options function parame-
ters, in the philosophy of the JavaScript programming style. The
general creation function would then be:

sglSomeGLObjectInfo (
gl , arg1 , / * . . . , * / argN , options

) ;

where gl is the WebGL context object, arg1..N are manda-
tory object-specific parameters (like texture width and height), and
options is a JavaScript object of the form

v a r options = {
objSpecificParam1 : nonDefaultValue1 ,
/ / . . .
objSpecificParamK : nonDefaultValueK

} ;

That is, whenever the user needs to override default values, a spe-
cific field in the options parameter can be specified with its re-
spective value. This simple mechanism is indeed a powerful way
to lessen the burden of library users in frequently performed tasks,
while giving them the all the control they need whenever default
parameters do not suffice.
For every type of WebGL object, the developer can use the cor-
responding SpiderGL creation function which returns a JavaScript
object of type SglObjectTypeInfo with no associated logic
(e.g. methods) where every field corresponds to an attribute of
the native object. In the case of container objects like shader pro-
grams, WebGL functions are used to retrieve object specific val-
ues which are not part of the construction parameters set. This is

the case of shader uniform locations and vertex attributes binding
points. Whenever an object is created with these utility functions,
the developer can freely use its handle field to directly work with
WebGL calls.

GL: Wrappers The use of a low-level API often requires a se-
quence of calls even to accomplish a simple task and even af-
ter object/resource creation and initial setup. For this reason, ev-
ery WebGL object has a corresponding higher-level wrapper which
takes care of the usage details.

Wrapper objects constructors parameters are the same used
in their corresponding lower-level creation functions, but
they also have overloaded versions which take the single
SglObjectTypeInfo structure. This is particularly useful
when more developers are involved in a large system: in this case,
everyone can choose the best level of abstraction which fits his or
her habits. For example, if WebGL resources are globally acces-
sible, the developer of a first module can decide to use the native
handle reference, while in another module other people could
choose a higher level approach by creating a wrapper object around
the low level object definition, i.e.:

/ / wrap a s h a d e r program
v a r prgWrap = new SglProgram (gl , prgInfo ) ;

and ensuring that every attribute of the object is properly set to meet
the wrapper assumptions. To this end, every wrapper contains a
synchronize() method which retrieve the salient attribute val-
ues which could have been changed with native WebGL calls. For
performance reasons, the synchronization step is not automatically
performed but should be explicitly invoked.

MESH: Mesh Manipulation and Rendering

One of the fundamental parts of a graphics library consists of data
structures for the definition of 3D objects (meshes) and their ren-
dering.
As in any library for polygonal meshes SpiderGL encodes a mesh
as a set of vertices and connectivity information.
A vertex can be seen as a bundle of data, storing several kind
of quantities such as geometric (position, surface normal), optical
(material albedo, specularity) or even custom attributes.
The connectivity describes how these vertices should be connected
to form geometric primitives, such as line segments or triangles.
As the representation of meshes is tightly related to their intended
use, SpiderGL supplies two different data structures: the first one,
SglMeshJS, resides in client scope, i.e. in system memory, where
it can be freely accessed and modified within the user script; the
other is SglMeshGL, which is the image of a mesh in the GPU
memory under the form of vertex/index buffer objects.

Memory layout: vertices There are two main layouts which can
be used to store vertex data: array-of-structs or struct-of-arrays.
In the first case, a vertex is represented as an object containing all
the needed attributes: the vertex storage thus consists of an array of
such vertex objects.
In the second case, an array is created for each vertex attribute:
in this case the vertex storage is a single object whose fields are
arrays of attributes, where a vertex object is extracted by selecting
corresponding entry in each array.
SpiderGL adopts the struct-of-arrays layout for two reasons:

• JavaScript runtime performs more efficiently when working
with homogeneous arrays of numbers rather than arrays of
generic object references



• adding and removing attributes is easily accomplished.

In a similar way, the GPU-side mesh (SglMeshGL) stores its ver-
tices with a dedicated vertex buffer object (VBO) for each attribute.
Such a choice for the GPU layout can be objected by claiming that
the use of interleaved vertex arrays is more efficient, because in-
terleaving attributes results in a more efficient memory access pat-
tern, which is true when we solely consider the memory bandwidth
used by the isolated system composed of the GPU memory and
the vertex puller stage of the graphics pipeline. In this subsystem,
the prefetching policy of the pre-transform-and-lighting cache mit-
igates the transfer latency.
However, when looking at the whole rendering pipeline in real-life
scenarios, we see how the most relevant part of the execution time is
spent in the vertex shader (whose overall performance is increased
by the post-transform-and-lighting cache), in the fragment shader,
in texture accesses and framebuffer writes or compositing (blend-
ing) operations. In our experiments, these bottlenecks made the
benefits of the interleaved layout not even measurable.
These considerations supported our choice in adopting the struct-
of-arrays layout for both Application-side and GPU-side meshes.

Memory layout: connectivity The connectivity can be implic-
itly derived from the order in which vertices are stored or, more
frequently, explicitly described with a set of vertex indices. In
SpiderGL it is possible to represent both of them with, respectively,
array primitive or indexed primitive streams.
A SpiderGL mesh may contain more than one primitive stream; for
example it may contain a primitive stream for the triangles and one
for the edges in order to render the object in a filled or wireframe
mode (please note that the glPolygonMode command is not in
the WebGL specifications).

Overcoming WebGL limitations When using indexed primi-
tives in WebGL, the native type for the elements in the index ar-
ray can be UNSIGNED BYTE or UNSIGNED SHORT, so the max-
imum vertex index is 28 − 1 or 216 − 1, respectively. SpiderGL
automatically overcomes this limitation by splitting the original
mesh into smaller packets. In order not to burden the user with
special cases when converting an SglMeshJS to its renderable
representation, we introduced the packed-indexed primitive stream
for SglMeshGL, which transparently keeps track of sub-meshes
bounds without introducing additional vertex or index buffers.

Rendering In WebGL the rendering process involves the use of
shader programs, vertex buffers and, often, index buffers and tex-
tures. Central to the graphics pipeline is the concept of binding
points, that is, named input sites to which resources are attached
and from which pipeline stages fetch data (see Figure 3).

Rendering a mesh with WebGL consists of the following steps:

1. Attach mesh vertex buffers to named vertex attributes binding
sites

2. In case of indexed primitives, attach the index buffer to the
primitive index binding site

3. Bind a shader program to the vertex and fragment processing
stages

4. Establish a correspondence between vertex attribute binding
points and vertex shader input attributes

5. Invoke the rendering command

In SpiderGL, mesh rendering is efficiently accomplished with the
SglMeshGLRenderer helper class. This class takes care of all
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Figure 3: Mesh Rendering: vertex buffers, index buffer and textures
are attached to named binding sites. Then a series of correspon-
dences is established between: a) mesh vertex streams and vertex
shader attributes, b) texture units and shader texture samplers and
c) application values and shader uniforms.

the steps listed above, minimizing the number of binding operations
in case of multiple instances rendering and providing smart mecha-
nisms which allow the user to explicitly setup vertex attributes cor-
respondences, shader program uniforms and texture samplers.

Importers: Input Formats Content formatting (geometry, im-
ages, shader effects code etc.) has been carefully kept away from
OpenGL-class graphics libraries, due to their application-specific
nature; therefore, the importers are not really part of the kernel
of SpiderGL. At the present SpiderGL supports COLLADA, the
Alias|Wavefront OBJ format for basic three-dimensional objects
and, due to the extremely simple definition of mesh, the JSON
[Crockford ] object serialization framework.

3.1.1 ASYNC: Asynchronous Content Loading

Several CG applications requires the ability of asynchronous load-
ing in memory from the disk or from a remote location. Usu-
ally this is implemented using a multithread architecture with pri-
oritized request queues which prevent the rendering freeze dur-
ing data transfers. JavaScript does not support multithreading
so the asynchronous loading of remote content is done by using
XMLHttpRequest and Image objects, appropriately set up with
callback functions which will be invoked whenever the transfer of
the requested data has completed. SpiderGL uses this mechanism
to implement prioritized request queues. The following code snip-
pet shows how to use a priority queue to create textures from remote
images:

/ / c r e a t e a r e q u e s t queue
/ / w i th a maximum number o f ongoing r e q u e s t s
v a r requestQ = new SglRequestQueue (maxOngoingReqCount ) ;



/ / d e f i n e a c a l l b a c k f u n c t i o n t h a t w i l l
/ / c r e a t e a t e x t u r e when t h e image d a t a i s r e a d y
v a r textures = { } ;
v a r callback = f u n c t i o n (request ) {

textures [request .url ] = new SglTexture2D (gl , ←↩

request .image ) ;
} ;

/ / i n s t a n t i a t e r e q u e s t s and push i t i n t o t h e queue
v a r req1 = new SglImageRequest ("sourceURL1" , callback ) ;
requestQ .push (req1 ) ; / / c o n t i n u e i s s u i n g r e q u e s t s

The status of the request can be queried at any time, allowing the
application to take different code paths depending on the resource
availability or even abort the request. This whole mechanism is par-
ticularly useful when multiresolution algorithms and data structures
are employed for tasks such as 3D navigation in large environments.
Along with asynchronous facilities, this module provides easy-to-
use routines to access the internal content of the HTML document.

3.2 UI: Event Handling and Interactors

To access the WebGL layer within a web page, a specific context
object must be requested from an HTML canvas object. The
HTML rendering engine will then issue a page composition oper-
ation whenever it detects changes to the associated WebGL frame-
buffer. In every interactive application, the displayed content is of-
ten a consequence of some kind of user interaction. SpiderGL pro-
vides an event handling subsystem which reflects the philosophy of
the GLUT library [Kilgard ]. GLUT allows application developers
to selectively install custom callbacks for the most common user
input event types, such as keyboard key presses or mouse motion.
We translated the callback approach used in GLUT in a more object
oriented way. The developer can create a generic object and regis-
ter it to an HTML canvas element; events raised from the canvas
will be then intercepted by the user interface module which in turn
will dispatch them to the registered object. The correspondences
between events and event handlers are resolved by simply inspect-
ing the registered object and looking for methods with predefined
names. In addition to event dispatching, the registered object will
be augmented by a ui field which can be used to access the logging
system, as well as important information such as tracked input state
and canvas properties.
Interaction with the three-dimensional scene itself is done with
standard viewpoint and object manipulation tools. These include
a camera interactor which implements the typical paradigm used
in first-person shooter games (SglFirstPersonCamera) and
a trackball manipulator (SglTrackball) for object inspection
with pan, zoom, rotation and scaling operations.

3.3 GEOMETRY: Math and Space

The geometry module provides low-level mathematical functions
and objects as well as space-related object representations and al-
gorithms, as described in the following.

3.3.1 Math

This submodule implements essential mathematical objects such as
vectors and matrices, along with basic operations on them. Par-
ticular attention has been paid in their implementation in order to
reduce the programmer effort and the impact on performances.
The low-level layer is composed by functions that operate on native
JavaScript arrays as input parameters and return types. As a usage
example, calculating a three-dimensional triangle normal given 3
JavaScript arrays v0,v1,v2 would be as follow:

v a r normal = sglNormalizeV3 ( sglCrossV3 (sglSubV3 (v1 , v0←↩

) ,sglSubV3 (v2 , v0 ) ) ) ;

As it can be noted, a complex expression is expressed by nesting
function calls. Moreover, the lack of overloading (which does not
exist in JavaScript) imposes the use of unique names for distin-
guishing on the input types (in the above example, the V3 suffix is
used to identify the subset of functions working with 3-dimensional
vectors).
The high-level layer is composed of classes that wrap the low-level
layer. The above example would become:

v a r v0 = new SglVec3 (x0 , y0 , z0 ) ;
v a r v1 = new SglVec3 (x1 , y1 , z1 ) ;
v a r v2 = new SglVec3 (x2 , y2 , z2 ) ;
v a r normal = v1 .sub (v0 ) .cross (

v2 .sub (v0 )
) .normalized ( ) ;

The choice on which level of abstraction to use is up to the devel-
oper.

3.3.2 Space-Related Structures and Algorithms

Another important module at the foundation of a 3D graphics
library comprises standard geometric objects, as well as space-
related algorithms. SpiderGL offers a series of classes represent-
ing such kind of objects, like rays for intersection testing, infinite
planes, spheres and axis aligned boxes, coupled with distance cal-
culation and intersection tests routines.

Hierarchical frustum culling When operating over a network, it
is reasonable to assume that the content retrieval has an consistent
impact on the overall performance. Since multimedia context be-
gan to be widely used in web documents, it was clear that a sort of
multiresolution approach should have to be implemented to com-
pensate for the transmission lags, giving the user a quick feedback,
even if at a lower resolution (i.e. progressive JPEG and PNG). Fol-
lowing this principle, geometric Level Of Detail (LOD) is used to
implement a hierarchical description of a three-dimensional scene,
where coarse resolution data is stored in the highest nodes of a tree-
like structure while full resolution representation is available at the
leaf level. To ease the use of hierarchical multiresolution datasets,
SpiderGL provides a special class, SglFrustum, which contains
a series of methods for speeding up the visibility culling process
and projected error calculation for hierarchical bounding volumes
hierarchies.

Matrix stack Users of pre-programmable (fixed pipeline) graph-
ics libraries relied on the so called transformation matrix stacks
for a logical separation among the projection, viewing and mod-
eling transformations, and for a natural implementation of hierar-
chical relationships in composite objects through matrix composi-
tion. Even if this has proven a widely used pattern, it no longer
exists since version 2.0 of OpenGL|ES (it was claimed that its in-
troduction in the specifications would have violated the principle
of a bare-bones API). We thought that this important component
was indeed essential in 3D graphics, so we introduced the SglMa-
trixStack class, which keeps track of a stack of 4x4 transforma-
tion matrices with the same functionalities of the OpenGL matrix
stack. Moreover, the SglTransformStack comprises three matrix
stacks (projection, viewing and modeling) and represents the whole
transformation chain, offering utility methods to compute viewer
position, viewing direction, viewport projection of model coordi-
nates to screen coordinates and the symmetric unprojection.
Note that we decided to have the modeling and viewing transforma-



Figure 4: Shadow Mapping: a scene composed of 100K triangles
is rendered at the maximum reachable speed of 250 FPS. The 10242

shadow map has been packed on a 32 bit RGBA texture because the
browser does not support depth textures fetches in fragment pro-
grams.

tion stacks separated, contrarily to the single OpenGL modelview
stack.

4 Using SpiderGL

The WebGL specification is still in draft version and it is only
implemented in the experimental version of almost all web
browsers. We successfully tested our library with the latest builds
of the most common web browsers on several desktop systems.
The results presented here have been run on the Chromium web
browser on a Windows Vista system with Intel i7 920 processor, 3
GB RAM, 500 GB Hard Drive and an NVIDIA GT260 graphics
board with screen vertical synchronization disabled. The collected
results should be analyzed by considering that a minimal HTML/JS
page that only clears the color buffer reaches the limit of exactly
250 frames per seconds; we suspect that some kind of temporal
quantization occurs in the browser event loop.

The first example consists of rendering a 100K triangles mesh us-
ing Phong lighting model and a 10242 shadow map (see Figure 4),
which can be done at full framerate (250 FPS). Note that the cur-
rent WebGL specifications does not allow to read back values from
depth textures inside a fragment shader, so in the shadow pass we
encoded the fragment depth value in a 32 bit RGBA texture.

To highlight the capabilities of the packed-indexed primitive stream
(see Section 3.1), Figure 5(a) shows a 3D scan of Michelangelo’s
David statue composed of 1M triangles. The model outreaches the
maximum value for vertex indices (216 − 1) and is thus automati-
cally subdivided into smaller chunks (nine in this case), highlighted
by different colors in Figure 5(b). The performances here range
very inconstantly from 90 to 140 FPS, with peaks of 250. This is
probably due to the way the timer event is scheduled by the browser.

(a) (b) (c)

Figure 5: Large Meshes: vertex index limit is automatically over-
come with packed-indexed primitive stream. Here a model of the
Michelangelo’s David statue with 1M triangles is rendered at about
100 FPS on a web browser. The figure shows: a) the whole mesh,
b) the colored chunks after splitting and c) a close-up of the statue
head.

Figure 7: Snapshot of an adaptive multiresolution rendering of a
4k × 4K terrain (Pudget Sound model).

Figure 8: Four frames captured when visualizing High Quality
Polynomial Texture Maps. Light position is bound to the position of
the mouse on the window.



(a) (b)

Figure 6: Ray-Casted BlockMaps: (a) A fragment shader executes ray-casting over the BlockMaps of a city block at interactive rates (120
FPS). (b) a view of the hierarchical structures showing the bounding boxes of the hierarchy. The BlockMaps framework exploits the frustum
culling and asynchronous data transfer facilities offered by the SpiderGL library.

Multiresolution for large data

Multiresolution comes into play whenever we want to show data
that are too large to be handled w.r.t. the hardware capabilities. The
building blocks of a multiresolution renderer are: a hierarchical lay-
out of the data, an algorithm to visit such hierarchy and determine
the nodes to use for producing the current frame, and the ability to
load the nodes asynchronously, i.e. to proceed with rendering while
missing data are being fetched.

Figure 7 shows a snapshot of a terrain rendering demo. The terrain
is encoded by a quadtree of a 4K × 4K texture storing elevation
data. A regular grid of triangles is used to render each quad, by
fetching the elevation of the vertices in a vertex shader.
Figure 6(a) shows a similar example where the potential of
WebGL is even more evident. Here each quad contains a
BlockMap [Di Benedetto et al. 2009], i.e. a small image encoding
a portion of a urban dataset (both geometry and shading informa-
tion) and the rendering is done by an ad-hoc ray casting algorithm
implemented in the GPU as a fragment shader.
Figure 8 shows a multiresolution Polynomial Texture Map, which
is an image where each pixel encodes the color as a function of light
direction [Malzbender 2004]. Again, a quad tree is built from the
the original 2930×2224 image and a fragment shader computes the
current color as a function of the light position, passed as a global
uniform variable. The size of the PTM is about 56MB since each
pixels must store 9 values (3 for the RGB color and 6 for the PTM
coefficients).

These examples show the potentiality of a WebGL-based applica-
tion and the new possibilities opened by the availability of the GPU
from within the web browser. SpiderGL eases the coding of appli-
cations like these by providing function for executing the frustum
culling, computing on-screen projected error and handling asyn-
chronous data transfer.

5 MeShade: deploying 3D content on the
Web

While there are very large repositories for pictures, video or audio
files, a web site like Flikr or YouTube for 3D models has yet to
come. Up to now there are a few repositories of 3D models made
by human modelers that one can browse and also few examples

of repository of 3D scanned models [Stanford Computer Graphics
Laboratory 2000; Falcidieno 2004]. However it is likely that this
will change quickly in the near future, both for the increasingly
ease of producing 3D models by automatic reconstruction means
(for example by cheaper and cheaper laser scanners [nex ] or by
digital photography [Vergauwen and Gool 2006]) and for the ability
to use 3D graphics hardware acceleration in the web browser.

MeShade is a web application that allows the user to load a 3D
model and images, create a custom shader program (like one can do
using, for example, AMD RenderMonkey [AMD 2010], although
at the present with a more limited number of functionalities), and
export JSON and HTML code snippets to create a web page which
will provide interactive visualization of the mesh using the custom
shader.

The user interface of MeShade consists of several collapsible and
moveable panels (see Figure 9), representing the most important
parts of a shader composer application. Apart from the interac-
tive preview viewport which displays the loaded 3D model with the
current material, the user is provided with text areas for editing the
source code of the vertex and the fragment shaders. The user can
validate the correctness of the shaders by using the Validate button
which will show the compiler output (warning and error messages)
in the log area. The Apply button will apply the shader program to
the 3D model.
The way MeShade handles program uniforms and vertex shader at-
tributes is based on predefined names with specific semantic and
user-defined input values. In particular:

• every vertex attribute of the mesh is made available to the ver-
tex shader by declaring it with a predefined prefix, i.e. vertex
shader attribute a position will be mapped to mesh vertex
attribute stream named position;

• a series of fundamental and commodity values are exposed
via predefined uniform names, like transformation matrices,
model bounding box and so on;

• whenever a non-predefined uniform is found, an edit form is
added to the HTML DOM which allows for direct editing of
the scalar or vector values; the user interface for editing de-
pends on the type of the uniform variable;

• an image load form is created for every texture sampler uni-



Figure 9: The MeShade User Interface: once a 3D model URL
is specified and data is loaded, the preview viewport displays the
mesh using the vertex and fragment shaders written by the user on
the page GUI itself. Edit forms for uniforms and texture images are
dynamically added to the page as shaders are compiled.

form; although texture samplers are standard uniforms in the
GLSL language, they are grouped in a separate panel to reflect
the way SpiderGL handles textures.

The 3D model and the texture images are loaded by specifying
their URL and then pressing the corresponding Load button. The
interface also contains a list of all available predefined uniforms
and mesh vertex attributes. The latter ones are updated every time
a model is loaded.

Once the user has reached a satisfactory result, he/she can ask
MeShade to generate the code to embed the 3D model rendered
with the program shader just created within a web page, by press-
ing the Generate Code button. MeShade will generate two code
fragments, JSON and HTML, which can be copied to new or exist-
ing files.
The JSON section contains the geometry and images locations, as
well as the shaders source code and uniform values, and thus serves
as a scene description file. On the other side, the HTML code con-
tains all the HTML script tags to be pasted into existing pages
in order to access and visualize the scene.
We decided to generate code snippets rather than a complete HTML
page because repository designers are supposed to use their own
graphical style throughout their web sites: having only a very few
lines of code to embed inside web pages allows for a variety of
design choices. Moreover, separating the JSON scene description
code allows for sharing the same scene among several web pages
without code replication.

6 Conclusions

In this paper we presented SpiderGL, a novel 3D Graphics
JavaScript library which uses the upcoming WebGL specifications

for realtime rendering. With practical examples, we have shown
how the programming facilities exposed by the library help speed-
ing up the creation of 3D web applications without forcing the
developer to adopt predefined programming paradigms like scene
graphs. By exploiting the JavaScript programming language to
override the default behaviors of objects or express complex rela-
tions between the different entities involved in the rendering pro-
cess, the developer is provided with high-level utilities for the cre-
ation of complex three-dimensional scenes, while retaining full ac-
cess to the underlying WebGL layer. Common tools such as lin-
ear algebra, space related algorithms, asynchronous content loading
and user interface utilities complete the main sectors the SpiderGL
library addresses. The procedural style used throughout the library,
coupled with mechanisms for object connections make the frame-
work highly configurable and easily integrable into existing sys-
tems.
Furthermore we proposed a first potential application of SpiderGL
that we called MeShade, to ease the deployment of 3D models
on the web, which is likely to become a hot topic in a short
while. All the material presented in this paper is freely available
at http://spidergl.org

Future work

Beside the work of upgrading and extending SpiderGL, which
is obviously a daily activity, we envisage a promising direction
of work in the automatization of the process of converting large
databases of scanned objects to web repositories. The problems are
mainly related to the typical large size of scanned objects and to the
way to optimize them for a remote visualization. Although there are
many available tools to reduce the number of polygons in a mesh, to
parameterize it and to recover almost the full detail by bump map-
ping techniques (just to mention a viable, not unique, optimization
pipeline), the whole process still requires a skilled user to be done.
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