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Abstract

Range map registration is still the most time consuming phase in the processing of 3D scanning data. This is
because real scanning sets are composed of hundreds of range maps and their registration is still partially manual.
We propose a new method to manage complex scan sets acquired by following a regular scanner pose pattern. Our
goal is to define an initial adjacency graph by coarsely aligning couples of range maps that we know are partially
overlapping thanks to the adopted scanning strategy. For a pair of partially overlapping range maps, our iterative
solution locates pairs of correspondent vertices through the computation of a regular n×n kernel which takes into
account vertex normals and is defined in the 2D space of the range map (represented in implicit 2D format rather
than as a triangle mesh in 3D space). The shape-characterization kernel and the metrics defined give a sufficiently
accurate shape matching, which has been proven to fit well the requirements of automatic registration. This initial
set of adjacency arcs can then be augmented by the automatic identification of the other significant arcs, by
adopting a criterion based on approximate range map overlap computation. With respect to the solutions present
in literature, the simplifications and assumptions adopted make our solution specifically oriented to complex 3D
scanning campaigns (hundreds of range maps). The proposed method can coarsely register range maps in parallel
with the acquisition activity and this is a valuable help in assessing on site the completeness of the sampling of
large objects.

Categories and Subject Descriptors (according to ACM CCS): I.4.8 [Scene Analysis]: Range data
Keywords: 3D scanning, automatic registration, coarse registration, range map alignment.

1. Introduction

The increasing use of 3D scanning devices and the design of
new and efficient algorithms for range data post-processing
are the basis of a process where standard CAD tools are go-
ing to be replaced by a semi-automatic process based on the
direct sampling of real objects’ shape. Moreover, automatic
acquisition of shape and appearance is no longer confined to
the classical industrial applications (reverse engineering or
quality control), but it is positively affecting new and impor-
tant fields, such as Cultural Heritage (CH). Unfortunately,
the creation of 3D digital models from reality is still far
from being as simple as photography. The user has to man-
age many complex processing steps (range maps acquisition,
registration, fusion, geometry simplification, color attribute
recovery). A current goal is to design new solutions which
transform the scanning pipeline into an unattended process.

In this direction, at present, it is possible to assert that the
bottleneck of the whole process is the range maps registra-
tion phase, since this is the only task where a considerable
human intervention is still required. The accurate acquisition
of a real object requires many range maps taken from differ-
ent locations. If the scanner location and orientation are not
tracked, all those range maps are produced in different co-
ordinate spaces (each one depending on the corresponding
unknown location and orientation of the scanner). The goal
of the range map registration phase is to determine the rigid
geometric transformations necessary to bring back all the co-
ordinates of the acquired data into a unique Cartesian space.
Registration is the fundamental precondition to merge all the
data into a single and complete digital model. Our goal is to
design new solutions to make the alignment of range maps
an automatic process.
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The registration of multiple scans is usually implemented
by adopting a software approach split into two computa-
tional steps. An initial coarse registration provides a rough
positioning of the range maps, and a subsequent fine regis-
tration brings the scans into tight alignment. In other words,
coarse registration is concerned primarily with determining
which regions of two scans represent the same portion of
the object’s surface if any (the so called pair-wise surface
matching, to align them on the “overlapping” region), while
fine registration is concerned with minimizing the mismatch
between these corresponding overlapping regions. Fine lo-
cal pair-wise registration [BM92, LR01] or fine global reg-
istration (extended to the whole scanning set [Pul99]) are
generally based on unattended iteration of the ICP technique
and by now they ensure extremely good performances and
results. On the other hand, coarse registration represents the
real bottleneck. Despite the number of solutions proposed
(see Section 2), most of the available software systems im-
plement the coarse registration adopting a time-consuming,
interactive approach. According to the experience of the au-
thors, a complex scanning set composed of some hundreds
of range maps can require several days of difficult and te-
dious work to process the manual coarse registration phase.

This paper presents an efficient automatic solution to the
problem of the range maps registration. Even though many
algorithms and techniques exist in literature that provide ex-
cellent and general solutions (see Section 2), the objective
of the current work is to manage efficiently a very large
amount of data resulting from real scan campaigns. In order
to achieve this goal, our method is based on two assump-
tions:

1. the initial adjacency relations between the range images
are implicitly derived from the scanning pattern used dur-
ing the acquisition phase;

2. during the acquisition the scanner device does not rotate
“significantly” along its view direction (a plausible as-
sumption, since it’s usually placed over a tripod).

In this paper we present a different approach to the multi-
view registration task based on the idea that during a real
scan campaign the acquisition phase is usually performed
following some sort of regular pattern: horizontal, vertical
or circular. The pattern used to acquire range maps implicitly
defines an initial adjacency graph that can be used to start the
process by computing pair-wise range maps matching for
the coarse registration. The new metric proposed for pair-
wise matching is fast to compute and easy to implement.
Then, the system is able to augment the adjacency graph by
introducing all other registration arcs corresponding to pair
of range maps with significant overlap extent.

The advantages of our solution are as follows:

• Simplicity and generality: the method does not require
HW tracking systems and can be applied to any scale
(from small objects to buildings).

• Exploiting available knowledge: scanning CH artifact is
moving from a research issue to a “standard” activity that
just like any other documenting task should necessarily
include some kind of planning, producing a regular scan-
ning scheme to be faithfully followed during the 3D scan-
ning process. Random scanning is not quite common in
the case of complex scanning activities. 3D scanning is
becoming a structured process and it is unreasonable that
a complex activity involving the documentation of large
valuable CH objects proceeds without any kind of order.
Scanning is therefore a planned, structured task and ex-
ploiting this information should not be seen as an hack or
a trick but as an opportunity to avoid wasting valuable in-
formation. As we will see in the following, we make pro-
ficient use of the information on the acquisition pattern.

• Scalability: existing approaches have been tested only on
very small datasets that are 1 or 2 mag orders less than
the real-world complex scans (i.e. 1-5 million points vs.
hundred million points). Scalability of other multi-view
surface matching is limited to small scan sets (less than
50 range maps, according to [HH03]). Our method has
been proved to work on a very complex scanning set (up
to 300 range maps).

• Robustness: existing global approaches can fail in the case
of symmetries along part of the objects. Focusing on small
portions of the objects (the ones covered by the overlap-
ping sections of high-resolution range maps, which usu-
ally cover a very small subset of the object) increases
the probability of finding erroneous self-similarities. This
is even more critical when scanning artworks, since the
presence of symmetry is not a pathological situation but
the common use case: decoration is often a matter of
repeating symmetric patterns (see Figure 6). The prob-
ability of producing wrong matches grows quadratically
with the size of the dataset (the number of possible range
maps pairs grows quadratically), and detecting and purg-
ing them is not easy. On the other hand, a linear approach
such as the one proposed here reduces the possibilities of
producing wrong matches.

• Accuracy: other approaches use a graph-based approach
[HH03, BDW∗04], where a minimum spanning tree of the
graph of all possible pair-wise registration is built and de-
fines the global registration. On the other hand, our global
alignment is built on a subset of the graph (a connected
sub-graph possibly cyclic, not a tree), defined by adopting
a criterion based on the percentage of spatial overlap be-
tween range maps (see Section 5). This means that much
more data is used in the registration and the overall qual-
ity of results is improved . The final registration accuracy
in all our tests is well below a maximal error of 0.1 mm.

• Usability: previous approaches adopt a do-everything or
fail approach. From an engineered point of view, our ap-
proach never totally fails. As we will see in the follow-
ing, even if a single pair-wise surface matching fails (a
very rare occurrence in our tests) the work done on all
other matches can be used proficiently by simply adding a
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single manual alignment to the previous coarsely aligned
maps. This manual intervention can also be used for the
rough alignment of the range maps eventually acquired
beyond the regular pattern.

To our knowledge, our solution is the only one experi-
mented with success on really complex scanning campaigns
(i.e. hundreds of range maps representing objects which do
not fit the working volume of the scanning device).

2. Related work

The alignment task is the most time-consuming phase of
the entire 3D scanning pipeline, due to the substantial user
contribution required by current systems, since range map
registration is usually solved by adopting a partially manual
process. The standard approach is as follows:

Local pairwise registration

• Overlapping range maps detection: for each range map
Ri in the scan set R, detect all R j in R which are par-
tially overlapping with Ri. This pairwise process can be
considered as a graph problem: given the nodes (i.e. the
range maps), we have to select a subset of arcs such that
every node is linked to some others if the correspond-
ing maps are partially overlapping, and thus have to be
aligned (graph of overlaps). If the set of range maps is
composed of hundreds of elements (the scanning of a 2
meters tall statue generally requires between 200 and to
500 range maps, depending on the device used and on the
shape complexity of the object), then the user has a very
complex task to perform;

• Initial coarse registration: provide a first rough registra-
tion for each range map. This is performed by deriving
from the complete graph of overlaps a subgraph in which
(a) each node (range map) has at least one entering arc ,
(b) the graph is connected, i.e., for every couple of nodes
i and j, a path connecting i and j exists. The initial place-
ment is heavily user-assisted in most of the commercial
and academic systems. It usually requires the interactive
selection and manipulation of the range maps, either to
select a small set of corresponding point pairs or to super-
impose the range maps by means of interactive rotations
and/or translations;

• Fine Pairwise Registration: the scans are finely aligned,
usually adopting the Iterative Closest Point process (ICP)
[BM92, CM92, LR01] which minimizes the alignment er-
ror between any pair of range maps.

Global registration

• The pairwise registration produces good results but, since
the error minimization takes place sequentially on mesh
pairs, the error tends to accumulate and it may result in
significant artifacts after a number of pairwise steps. A so-
lution is to perform a global minimization process which
distributes the residual error among all pairs in order to
spread the error evenly among all range map pairs [Pul99].

The precision of the coarse registration phase does not
need to be really high because the convergence of the suc-
cessive fine registration is ensured even when the accuracy
is low (e.g. a few millimeters of distance between the two
maps); however, the manual intervention required for coarse
registration is time-consuming and boring, since it usually
requires several days of work on a complex scanning set.

2.1. Hardware tracking

An orthogonal strategy to the one presented here is to
add a tracking subsystem to the scanning device to track
its position and orientation in the scanning space. Track-
ing solutions can be based on multiple technologies: mag-
netic trackers [Pol03], optical trackers [Ste04], or accurate
mechanical systems (like rotary platforms or robotic arms
[LPC∗00, CFI∗04]) which can produce all needed data on
the translation/rotation of the object/scanner.

2.2. Pair-wise matching and automatic registration

Automatic coarse registration was investigated quite inten-
sively in the last years; it is possible to distinguish differ-
ent approaches to solve the problem. It’s not our intention
to present here a complete survey of the algorithms pro-
posed in the literature (a good overview can be found in
[CF01, HH03]).
Roughly speaking the methods for pair-wise matching of
range maps can be subdivided into at least three large
classes: methods based (a) on the rigidity of the shape, (b)
on the global characterization of the shape, and (c) on the
local characterization of the shape.

In the methods based on the rigidity of the shape the 3D
registration problem is treated as a partial matching prob-
lem and the rigidity constraint among some preselected con-
trol points is exploited to restrict the search range used for
matching. A representative of this class is the well-known
DARCES [CHC99] algorithm, an approach based on the
RANSAC scheme [FB81], that is invariant for all kind of
rotations and translations. The methods of this class are gen-
erally robust, they get a solution also in presence of noise of
the data, and they do not need that the data contain local fea-
tures. On the other hand these methods are computationally
intense.

The methods based on the global characterization of the
shape generally define a mapping from the surface model
to some fixed-dimensional vector space. Delingette et al.
([DHI92, DHI93]) developed the Spherical Attribute Im-
age (SAI) method that defines a direct mapping between
an object surface and a spherical surface, thus obtaining
a unique representation of any non-convex object (or part
of it); the correspondence between two range maps can
be obtained from a comparison of the respective SAIs.
A similar approach is represented by the spherical ex-
tent function [VS01]. Harmonic maps have been adopted
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as surface descriptors, among others, by Funkhouser et al.
[MKR03]. They proposed the spherical harmonic repre-
sentation which provides a rotationally invariant represen-
tation of a shape descriptor based on spherical harmonics,
enhanced in [MKR04] by factoring out the contribution of
anisotropy and geometry. Lucchese et al. [LLC02] intro-
duced a method operating in the frequency domain: to esti-
mate the roto-translation between a pair of meshes they pro-
pose a featureless algorithm which exploits the information
about the geometric regularity captured by the Fourier trans-
form. These methods generally suffer for noise in the data,
insufficient overlap between the surfaces and high computa-
tional costs.

The methods based on the local characterization of the
shape are generally more appropriate than the previous ones
because they do not suffer in the cases of highly incomplete
knowledge of the surfaces to be aligned. The object-based
approach of the previous class is replaced by a vertex-based
approach. Most of the methods use some sort of evalua-
tion of the curvature of the mesh to characterize mesh ver-
tices (bi-tangent curves are used, for example, in [WG02]).
Stein and Medioni [SM92] introduced the splash images, i.e.
small surface patches used to detect local changes in the sur-
face orientation. Splash images are then used as primitives
to measure the differences between surface normal distrib-
utions (this proposal was one of the main inspirations for
our work). Chua and Jarvis [CJ97] proposed the point sig-
nature, a representation invariant to rotation and translation
that encodes the minimum distances of the points on a 3D
contour (intersection of the surface with a sphere centered
in the point under analysis) to a reference plane. 3D point
fingerprints [SPK∗03] can be considered an extension of the
previous approach. The point fingerprint is a set of 2-D con-
tours that are the projections of geodesic circles onto the tan-
gent plane. Johnson and Hebert [JH97] proposed the concept
of spin image, a more descriptive structure than splash im-
ages and point signatures. A spin image is generated using
oriented points (3D points with directions) and it is a 2D
histogram of the surface locations around a point. Matching
points that rely on different views of the model have similar
spin images, so they can be used to find the correct corre-
spondences. Spin images have been recently extended to in-
clude texture information which could be encoded in range
maps [BAGC05]. Another interesting approach is the one
proposed recently by Bendels et al.[BDW∗04], where 2D in-
tensity images are exploited for finding corresponding points
on 3D views.
These methods can be used for the coarse registration prob-
lem and they generally present good rates of convergence.
The main problem is that the generality of the solution is
paid in terms of high computational costs.

The availability of color or other surface attributes sam-
pled together with the geometry has been used either to im-
prove the accuracy of geometric registration or to perform
automatic coarse alignment [Rot99].

Figure 1: Range maps are taken in a row-wise order: an
example of circular stripe (top) around a statue’s head; an
example of raster-scan scanning order (bottom) adopted for
the acquisition of a bas-relief.

3. Using the information on the scanning plan

The standard registration task of multiple range maps can
be simplified by considering some practical aspects. First,
since 3D acquisition is usually carried on by following a
simple selection of the scanner poses, an initial set of pair-
wise matches can be retrieved easily. Users usually acquire
range maps in stripes, following either a vertical, horizon-
tal, raster-scan or circular placement of the scanning sys-
tem (see Figure 1). The different types of stripes share some
common properties: they contain an ordered set of n range
maps, such that range map Ri holds a significant overlap-
ping with at least Ri−1 and Ri+1. Vertical, horizontal or
raster-scan stripes are often produced when acquiring ob-
jects like bas-reliefs, walls or planar-like items. Circular
stripes are indeed more useful when acquiring objects like
statues, columns or cylindrical-shaped objects.

If we can assume that the acquisition has been performed
using one of these stripe-based patterns, then we may restrict
the search for pair-wise matching to each pair of consecu-
tive range maps (Ri,Ri+1). From the point of view of the
registration algorithm, all the stripe patterns defined above
are equivalent: an automatic registration module can process
each couple (Ri,Ri+1) to generate the roto-translation trans-
formation matrix Mi that aligns Ri+1 to Ri. Therefore, we
reduce a 1 over n problem into a 1 over 1 problem. The
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Figure 2: Example of silhouette edges or self occlusion be-
tween two successive view points.

subset of registration arcs defined above is usually sufficient
for a successive ICP application on the selected pairs, in or-
der to obtain a local registration. This stripes-oriented ap-
proach can be seen as an efficient working strategy on com-
plex scanning sets, which maintains computations linear to
the number of scans.

4. Automatic pair-wise range map alignment

We assume that the two consecutive range maps Ra, Rb,
overlap on a reasonable portion of their surface (15-20%).
Like other surface matching algorithms, we look for a small
set of feature points which characterize the first range map
Ra: a point-based shape description kernel is proposed in
Section 4.1. Then, in a second step, for each of these t points
on Ra we search for the potential corresponding points on
the second mesh Rb (Sec. 4.2). Finally, out of those possi-
ble t pairs, we choose the three matching points giving the
best coarse alignment (Sec. 4.3); if the needed accuracy is
not reached, we iterate until we get convergence (Sec. 4.4).

4.1. Selection of the starting points

A trivial approach would be to choose the starting points
p ∈ Ra in a random way over the range map. Unfortunately,
this approach can produce non-representative samples that
reside in surface areas having little (or no) geometric fea-
tures and make accurate identification of the corresponding
points in the second range map Rb very hard. For this rea-
son, we need a measure of the representativeness of a given
vertex for the corresponding range map. Our input meshes
are regularly sampled 2D height fields †. The height field
assumption gives us a simple local parameterization of the
surface that allows, for each point p, to easily detect a small
and regular kernel of adjacent samples and to compute the

† This assumption does not hold for some rather unusual situations
(like for example the use of a scanner based on an irregular sampling
pattern)

variance of p with respect to the samples. Given a pivot ver-
tex p∈ Ra and its normal vector Np, we build a kernel Kp by
considering the n×n points around p in the range map (rep-
resented as a 2D raster). In our implementation, we adopt a
13×13 kernel. Each element ki, j ∈Kp contains the dot prod-
uct of the pivot’s normal vector and the normal vector of the
corresponding pivot’s neighbor. Then, we calculate the vari-
ance of each kernel Kp ∈ Ra:

s2(Kp) =
1
n2 ∑

i, j
(kp

i, j −E[Kp])2 (1)

where E is the average of each kernel:

E[Kp] = ∑
i, j

kp
i, j

n2 (2)

The variance is used to cluster all the range map points into
buckets characterized by a similar surface curvature. Low
values of s2(Kp) correspond to flat areas where the normal
vectors are relatively uniform. On the contrary, high val-
ues of s2(Kp) correspond to zones having high curvature.
We have chosen to discard all points having either high or
low variance, using two opportune threshold values selected
according to empirical experience. There are several moti-
vations for this choice. First, we obviously discard flat ar-
eas because they cannot give sufficient information to detect
the corresponding point in the other mesh. We discard also
points with high variance, even if this could seem less intu-
itive. First, a high variance vertex could belong to an open
boundary (and thus to an incomplete local sampling of the
surface); it has to be discarded since the matching range map
might have a more complete sampling of the same zone that
is unlikely to match the previous one. Second, a high vari-
ance vertex could be generated in the proximity of a silhou-
ette vertex (where we have a false step due to a self occlu-
sion of the mesh). These portions of the mesh are misleading
because these steps do not exist in reality, but they depend
on the scanner location at the time of the acquisition of the
range map Ra; the same portion of the surface, seen from
a different point of view, may have a very different shape
descriptor. Figure 2 shows how silhouette edges or self oc-
clusion can create a false high-variance ridge not existing on
the surface object.

Once the low- and high-variance vertices have been dis-
carded, a small set of candidate starting points are cho-
sen randomly among the remaining points (the ones with
medium variance, see Figure 3).

4.2. Finding a matching point

Given a selected vertex p ∈ Ra, we have to find the best
matching vertex q ∈ Rb (if it exists). The accuracy of the
matching algorithm is tightly bound to the metric used for
the comparison.

Our method builds on the kernel defined in the previous
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Figure 3: Points with medium-variance are shown in blue,
high variance in red and low variance in yellow.

subsection: we compute Kq for every vertex q ∈ Rb. Given
p ∈ Ra and its kernel Kp, the metric consists of finding the
most similar kernel Kq. For each Kq, we compute the squared
difference with Kp:

d2(Kp) =
1
n2 ∑

i, j
(kp

i, j − kq
i, j)

2 ∀q ∈ Rb (3)

and we choose as best potential matching point the one hav-
ing minimum distance d2(Kp).
This metric is invariant with respect to the usual transfor-
mations (translations and rotations) occurring to the meshes
belonging to a strip. This metric is not invariant to consis-
tent rotations around the view direction of the scanning de-
vice. However, in standard 3D scanning activity the scanner
is usually placed on a tripod, which makes it impossible to
apply a substantial rotation along the view axis.
Obviously, the metric we adopted does not ensure the con-
vergence to the correct matching: the selected corresponding
point could be incorrect, since multiple vertices can present
a shape signature similar to the one of the vertex considered.
Therefore, we need to validate the matching.
Other approaches exist that try to avoid as much as possible
any false match by defining more complex shape signatures.
We have chosen to follow a strategy which couples a com-
putationally efficient shape descriptor with a further valida-
tion phase which proves the correctness of (or purges) the
selected matching points pairs.

4.3. Matching points validation

By using the approach described in the previous section
we get a set S of t corresponding points pairs (p,q) with
p ∈ Ra,q ∈ Rb that can include some (or eventually many)
false matches. The naive approach – use all the t pairs to de-
termine the matching transformation matrix M according to
[BM92] – can easily fail if there are many incorrect match-
ing pairs.
The RANSAC (RANdom SAmple Consensus) scheme
[FB81] could be used. In the RANSAC algorithm a com-
bination Q j of three different pairs in S should be selected
in a random way and then the process iterated until a given
threshold is met. We adopted a different approach: since t is
usually small (t ≤ 30), it is possible to perform an exhaus-
tive search over the t pairs in order to compute the best roto-

translation matrix. For each combination Q j of three differ-
ent pairs in S we compute a transformation matrix M j. In this
way we obtain

(t
3
)

different matching matrices M j. Then, we
choose the matrix that provides the smallest alignment error
ε j computed only on the 3 pairs in Q j:

ε j =
1
3 ∑

(p,q)∈Q j

(‖p−M jq‖2) (4)

If the alignment error ε j is equal or smaller than the user-
selected threshold value coarse_err, we have found a suf-
ficiently correct alignment. Otherwise, M j should not be
considered as a correct alignment matrix. This threshold
coarse_err is usually given in metric units, i.e. in millime-
ters in our cases.

The computational cost of our approach depends on the
value of t and the resolution of the range maps. Larger is the
value of t and larger is the subset of Q j to be considered and
checked. In the next paragraph, we will show how to find
an alignment matrix using, at each step, a very small value
for t (20 to 40 vertices, where a standard range map contains
around 300K vertices).

4.4. Iterative matrix computation

If the best transformation matrix found yields an error
greater than the given threshold εbest > coarse_err then the
set of t pairs contains mostly incorrect matches.
Instead of setting a bigger value for the t parameter, we adopt
an iterative approach: all the previous steps (choice of a new
set of t vertex pairs, evaluation of alignment error) are iter-
ated until a proper alignment matrix is found. To improve
accuracy and speed up convergence,we reuse in each itera-
tion the best results obtained in the previous cycle.

At iteration i, we select the local set of t matching ver-
tices by computing the respective kernels. Then, to find the
best roto-translation matrix, we add to the local t pairs the 3
pairs that generated the best solution found in the previous
iteration. In this manner, the space of possible solutions is
augmented and this helps the algorithm to converge faster to
a consistent solution.

The main drawback of this method is that we might be
trapped in a local minimum, i.e. when the algorithm is not ca-
pable of finding a better solution than the previous one. We
detect a local minimum stall by checking if in subsequent
iterations the alignment error εbest doesn’t improve. To re-
move the stall, we perform a perturbation of the best current
solution by discarding one of the 3 couples that generated the
current solution. According to the results of our empirical
experiments (see Section 6), this simple heuristic detected
and recovered all local minima stalls. Moreover, in order to
detect the occurrence of an impossible match (e.g. when the
overlap Ra

T
Rb ≈ ∅), we set a threshold value maxiter at the

maximum number of iterations allowed.
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Figure 4: The three matching point pairs selected by the al-
gorithm on two range maps (top). The coarse alignment for
the two range maps required four iterations (errors are re-
ported in millimeters, middle; this error is further reduced by
ICP in the fine registration phase). The result of the coarse
alignment of the range maps of the head (bottom).

5. Augmenting the adjacency graph

Following the stripe-based approach we got a fine local
alignment between each subsequent pair of range maps,
which is a small subset of all adjacency arcs. Depending on
the shape of the object, some more arcs are usually needed
to obtain a high-quality alignment (possibly, interconnecting
each Ri with all the overlapping range maps). We do not re-
quire a user-assisted, explicit creation of all these arcs. To
retrieve all these arcs in unattended mode, augmenting the
arcs in our graph of pair-wise alignment, we use a spatial
indexing technique. A discrete space bucketing data struc-
ture can be easily instantiated (3D voxels of size propor-
tional to 5-10 times the inter-sampling distance used in scan-
ning), holding for each bucket the set of range maps passing
through that region of space. The initialization of this data
structure requires the scan-conversion of every range map in
the discrete space. We can easily retrieve groups of overlap-
ping range maps by a simple visit of the bucketing structure,
and tell how significant is the overlap extent of each poten-

Figure 5: The matching point pairs selected on the back of
the Arrigo’s head; the graph shows the alignment iterations
and the two local minima successfully managed.

tial pair by counting the number of buckets which contain
the same pair. Obviously, since we reconstruct the discrete
occupancy grid at low resolution, the information contained
gives an approximation of the overlapping factor and thus a
subset of the adjacency graph, but still sufficiently accurate
for our purposes. Given the occupancy grid information and
once a single alignment arc is provided for each range map
(see previous phase), our registration library is able to intro-
duce all needed arcs in a completely unattended manner, by
selecting only those which satisfy a minimum-overlap fac-
tor, and to process them using the ICP algorithm. Our tool,
MeshAlign [CCG∗03], implements this type of solution to
provide automatic graph completion and local pair-wise and
global fine alignment (based on ICP, following [Pul99]).
Following our approach, the number of arcs used in the
alignment is bigger than the one set up by methods which
select a minimum spanning tree over the adjacency graph.
In the latter case, we use a number of pair-wise arcs which
is equal to the number of range maps minus one. In our case,
the larger number of arcs considered in the alignment (see
results presented in Table 1) obtains a more accurate overall
alignment. Small misalignments are frequent in the case of
repeating patterns typical of decorations. In this case, having
the same range map involved in multiple alignments allows
a more robust and accurate management.

6. Experimental results

The proposed registration algorithm was tested on many
large datasets coming from real scanning campaigns (each
range map is usually affected by noise, artifacts and holes).
The laser scanner used in all our acquisitions is a Minolta
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Figure 6: The result of the coarse alignment applied to
the five circular stripes (left) and the final model obtained
(bottom). The histogram shows how many range maps were
aligned with that number of iterations; most of the align-
ments required less than 10 iterations.

Vivid 910, which returns range maps of resolution 640 ×
480 (around 300K samples). After the automatic selection
of an initial coarse registration matrix with the proposed al-
gorithm, all datasets were finely aligned (pairwise local reg-
istration, adjacency graph completion, and global registra-
tion) using our MeshAlign tool [CCG∗03]. The proposed al-
gorithm was implemented in C++ language and all perfor-
mance figures have been measured on a Pentium IV 2.4GHz
PC with 1GB RAM.

6.1. Single range map pairs alignment

Figure 4 shows a set of three matching points selected on
two range maps sampling a portion of the emperor Arrigo
VII’s head (the results are shown over the depth maps, ren-
dered with no roto-translations added at visualization time).
In this case each range map contains about 150k vertices
(here large portions in the 2D maps contain no data). The
solution was found in 30.8 seconds, setting t = 20 and
coarse_err = 1.0mm. The algorithm iterated four times to

Figure 7: The minerva’s head.

converge to a coarse alignment satisfying coarse_err. The
graph presents the best alignment error ε j obtained in the
four iterations. The result of this coarse alignment is pre-
sented in the bottom part of Figure 4 (this figure must seen
in color since the two range maps are rendered with a dif-
ferent color). From this figure it is clear that the two range
maps are sufficiently close for the ICP algorithm can be ap-
plied successfully to the meshes.
Another interesting example is shown in Figure 5; the
matching points selected on two different range maps rep-
resent the back section of the Arrigo’s head. In this case the
running time was longer, 1 minute 28 seconds, since the al-
gorithm was temporarily trapped in local minima and thus
required more iterations than the previous example (9 in to-
tal, with 2 local minima). After the stall’s detection (at the
5th iteration), the current solution was perturbed; we can no-
tice that, at the next iteration, the solution found was worse
than the previous one. Initially the error increases, but it im-
proves in the subsequent iteration.

6.2. Stripes alignment

We now present some tests performed on large datasets.
Figure 6 shows the result of the stripe-based alignment of
a spiral column with artistic carvings (real size is about 85
cm tall, with a diameter of 25 cm.). Five circular stripes
were scanned, for a total of 62 range maps (about 11M ver-
tices). The automatic coarse alignment process completed in
1h:13min, using t = 20 and coarse_err = 1.0mm. The graph
on the bottom of Figure 6 shows how many range maps of
the column were aligned by the algorithm in a certain num-
ber of iterations: most of the range map pairs required few
iterations (≤ 10), while only 2 meshes required about thirty
iterations. Another example of circular stripe is represented
by the minerva’s head (see Figure 7), the performances to
align the dataset are shown in table 1. An example concern-
ing a bas-relief is shown in Figure 8; the length of the bas-
relief is approximately 2.5 meters. In this case two raster-
scan (snake-like) stripes were acquired, for a total of 117
meshes (about 45.5M vertices). The algorithm performed the
overall alignment in 1h:50min. As shown in the graph pre-
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Figure 8: The coarse alignment of the bas-relief (top) and
the final model (middle); almost all of the alignments re-
quired just 1 iteration.

sented in Figure 8, almost all the pair-wise alignments were
done in a single iteration, so the entire process required a
shorter time to complete than the previous example. This
run produced an overall alignment completely satisfactory
for the subsequent application of ICP and global alignment.
Again, the set of arcs has been completed automatically by
the MeshAlign system. It has to be underlined that all of the
detected arcs are used by MeshAlign for the local and global
fine registration step.

An overall presentation of numerical figures data of the
processing of all the scans set is given in Table 1. The last
two scan sets in this table are presented in Fig. 9 and 10.

7. Conclusions

We have presented an automatic registration method which
has demonstrated very good performance while converging
to valid solutions. The method is based on some simplify-
ing assumptions, which allow us to solve the automatic reg-
istration with an iterative solution based on the automatic
detection of corresponding point pairs and automatic detec-
tion of matching range maps pairs. The solution presented
is based on a new shape characterization kernel that focuses
on surface vertices; it works in the 2D space of the range

Figure 9: The coarse alignment of a portion of the archway
of S. Ranieri’s door, Pisa Cathedral (left). The final model
after ICP and global alignment (right).

Figure 10: The coarse alignment of Arrigo VII’s sepolcro.

maps and characterizes 3D geometry by processing surface
normals evaluated on a kernel of regularly sampled adjacent
points. The method has been shown to work well on real
complex scan sets with good performance on standard PCs.
We have included this solution as a background process in
our scanning front end (which drives a Konica Minolta scan-
ner). Due to the low computational complexity, automatic
alignment runs in background during the acquisition, per-
mitting on the fly alignment of the range maps. This allows
the user to monitor the completion status of the acquisition
and to detect not sampled surface regions well in advance,
while removing the registration bottleneck.
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