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Abstract
This paper describes an efficient technique for out-of-core rendering and management of large textured terrain
surfaces. The technique, called Batched Dynamic Adaptive Meshes (BDAM) , is based on a paired tree structure:
a tiled quadtree for texture data and a pair of bintrees of small triangular patches for the geometry. These small
patches are TINs and are constructed and optimized off-line with high quality simplification and tristripping
algorithms. Hierarchical view frustum culling and view-dependent texture and geometry refinement is performed
at each frame through a stateless traversal algorithm. Thanks to the batched CPU/GPU communication model,
the proposed technique is not processor intensive and fully harnesses the power of current graphics hardware.
Both preprocessing and rendering exploit out-of-core techniques to be fully scalable and to manage large terrain
datasets.

Categories and Subject Descriptors(according to ACM CCS): I.3.3 [Computer Graphics]: Picture and Image Gen-
eration; I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism.

1. Introduction

Interactive visualization of massive textured terrain datasets
is a complex and challenging problem: the size of current
geometry and texture datasets easily exceeds the capabilities
of current hardware. Various dynamic multiresolution mod-
els have been proposed to face this problem, usually based
on the idea of constructing, on the fly, a coarser adaptively
approximated representation of the terrain to be rendered in
place of the complete terrain model.

Unfortunately current dynamic multiresolution algo-
rithms are very processor intensive: the extraction of an ad-
equate terrain representation from a multiresolution model
and its transmission to the graphics hardware is usually the
main bottleneck in terrain visualization. Nowadays, con-
sumer graphics hardware is able to sustain rendering rate of
tens of millions of triangles per second, but current multires-
olution solutions fall short of reaching such performance.
This because the CPU is not able to generate and extract
such variable resolution data at the requested rate; moreover
these data must be sent to the graphics hardware in the cor-
rect format and through a preferential data path. The gap be-
tween what could be rendered by the graphics hardware and

what we are able to batch to the GPU, is doomed to widen
because CPU processing power grows at a much slower rate
than GPU’s one.

Therefore our goal is to propose a technique that is able
to manage massive textured terrain datasets without bur-
dening the CPU and to fully exploit the power of current
and future graphics hardware. As highlighted in the short
overview of the current solutions for interactive visualiza-
tion of large terrains (Sec. 2), the techniques based on hi-
erarchy of right triangles are the ones which ensure max-
imum performance, while TIN based multiresolution solu-
tions reach maximal accuracy for a given triangle count. In
this paper we introduce a new data structure that gets the
best out of the above approaches. Moreover, our approach
efficiently supports the combination of high resolution el-
evation and texture data in the same framework. Our pro-
posed BDAM (the sound of a gunshot16) technique is based
on a paired tree structure: a tiled quadtree for texture data
and a pair of bintrees of small triangular patches for the ge-
ometry (Sec. 3). These small patches are TINs and are con-
structed and optimized off-line with high quality simplifica-
tion and tristripping algorithms. A hierarchical view frustum
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culling and view-dependendent texture/geometry refinement
can be performed, at each frame, with a stateless traversal
algorithm, which renders a continuous adaptive terrain sur-
face by assembling these small patches (Sec. 4). An out-of-
core technique has been designed and tested for construct-
ing BDAMs using a generic high quality simplification al-
gorithm (Sec. 5). The efficiency of the BDAM approach has
been succesfully evaluated on a standard terrain benchmark
(Sec. 6).

2. Related Work

The problem of rapidly rendering a continuous represen-
tation of a given terrain where the resolution adaptively
matches with the current viewing position is an active re-
search area. Since first approaches (8, 21, 13) many differ-
ent data structures have been proposed. A comprehensive
overview of this subject is beyond the scope of this paper. In
the following, we will discuss the approaches that are most
closely related to our work. Readers may refer to recent sur-
veys15, 18 for further details.

From the point of view of the rapid adaptive construc-
tion and display of continuous terrain surfaces, two main
approaches have been proposed to manage this problem: a)
techniques that exploit a regular hierarchical structure to ef-
ficiently represent the multiresolution terrain, b) techniques
that are based on more general, mainly unconstrained, trian-
gulations.

The most successful examples of the first class of tech-
niques include hierarchies of right triangles (HRT)5 or
longest edge bisection15, triangle bintree13, 4, restricted
quadtree triangulation17, 22. The scheme permits the creation
of continuous variable resolution surfaces without having to
cope with the gaps created by other regular grid schemes.
The main idea shared by of all these approaches is to build
a regular multiresolution hierarchy by refinement or by sim-
plification. The refinement approach starts from an isosce-
les right triangle and proceeds by recursively refining it by
bisecting its longest edge and creating two smaller right tri-
angles. In the simplification approach the steps are reversed:
given a regular triangulation of a gridded terrain, pairs of
right triangles are selectively merged. The regular structure
of these operations enables to implicitly encode all the de-
pendencies among the various refinement/simplification op-
erations in a compact and simple way: a simple binary tree
together with a smart error tagging of the tree nodes.

The second class of algorithms is based on less con-
strained triangulations of the terrain (TINs) and includes
multiresolution data structures like Multi-Triangulations21

adaptive merge trees24, hypertriangulations1, and the exten-
sion of Progressive Meshes9 to the view-dependent manage-
ment of terrains10. As pointed out and numerically evaluated
in 5, TIN outperform right triangles hierarchies in terms of
number of triangles / error counts; in other words, using an

HRT scheme you need a number of triangles that is much
higher (even an order of magnitude) than the one needed by
TINs to achieve the same terrain resolution. This is mainly
due to the fact that TINs adapt much better to high fre-
quency variations of the terrain. On the other hand, this class
of methods requires much more memory and more compli-
cated multiresolution data structures. For this reason, when
they are used in real-time environments, they are able to out-
put smaller models in the same frame time, possibly yielding
lower quality images.

HRT and TIN techniques also considerably differ in the
way they interact with LOD texture management. Very few
techniques full decouple texture and geometry LOD man-
agement. To our knowledge, the only general approach is
the SGI-specific clip-mapping extension23 and 3DLabs Vir-
tual Textures, which requires, however, special hardware. In
general, large scale textures are handled by explicitly par-
titioning them into tiles and possibly arranging them in a
pyramidal structure3. Clipping rendered geometry to texture
tile domains imposes severe limitations on the geometry re-
finement subsystem. General TIN approaches are difficult to
adapt to this context, and the few systems able to support
multiresolution geometry and texture are mostly based on
hierarchical techniques.

Our work aims to combine the benefits of TINS and HRT
in a single data structure for the efficient management of
multiresolution textured terrain data. A first attempt towards
this aim was given by Pajarola et al.19, presenting a tech-
nique to build a HRT starting from a TIN terrain. The main
idea is to adaptively build a HRT following the TIN data dis-
tribution and allowing vertex positions to be not constrained
to regular grid positions. Among the other differences, in our
proposal the advantages of TINS are much better exploited,
because each patch is a completely general triangulation of
the corresponding domain.

A common point of all adaptive mesh generation tech-
niques is that they spend a great deal of the rendering time to
compute the view-dependent triangulation. For this reason,
many authors have proposed techniques to alleviate popping
effects due to small triangle counts2, 10 or to amortize con-
struction costs over multiple frames13, 4, 9. Our proposal is,
instead, to reduce the per-triangle workload by composing
pre-assembled surface patches during run-time. The idea of
grouping together sets of triangles in order to alleviate the
CPU/GPU bottleneck was also presented in Rustic20 and
in the CABTT 12 data structures. RUSTiC is a extension
of the ROAM algorithm in which subtrees of the ROAM
bintree are, in a preprocessing phase, statically freezed and
saved. The CABTT approach is very similar to RUSTIC, but
clusters are dynamically created, cached and reused during
rendering. With respect to both CABBT and RUSTIC al-
gorithms our proposal makes explicit the simple edge error
property needed for cluster consistency, exploits high qual-
ity, fully adaptive triangulation of clusters, cache coherent
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Figure 1: a) the binary tree representing a Right Triangle
Hierarchy, b) an example of a consistent triangulation built
by a simple visit of the bintree, c) each triangle of the bintree
represents a small mesh patch with error ek+1 along the two
shortest edges and error ek elsewhere.

tri-stripping of clusters for efficient rendering, and multires-
olution texturing; finally, it supports out-of-core rendering
and construction of huge datasets.

3. Batched Dynamic Adaptive Meshes (BDAM)

Current multiresolution algorithms are designed to use the
triangle as the smallest primitive entity. We can synthesize
the main idea of our approach as designing a multiresolution
approach that uses a more complex primitive: small surface
patches (composed of a batch of a few hundreds of trian-
gles). The benefit of this approach is that the per-triangle
workload to extract a multiresolution model is highly re-
duced and small patches can be preprocessed and optimized
off line for a more efficient rendering, using, for example,
cache coherent triangle strips11. In other words, the approach
we propose is based on the idea of moving up the grain of
multiresolution models from triangles to small contiguous
mesh portions.

A hierarchy of right triangles can be coded as a binary
tree of triangles (Fig. 1.a); this binary tree representation is
the base of ROAM4 and of many other terrain multiresolu-
tion data structures. This is because it can be used to easily
extract a consistent set of contiguous triangles which cover
a particular region accordin to a given error thresholds (Fig.
1.b). Similarly to the ROAM algorithm, our structure, called
Batched Dynamic Adaptive Meshes (BDAM), uses a right
triangle hierarchy stored as a bintree, to give a high level
representation of the data partitioning. On the other hand,
we replace single triangles with small mesh patches as the
minimal manageable entities to bebatched(hence the name)

Figure 2: An example of a BDAM: each triangle represents a
terrain patch composed by many triangles. Each error value
is marked by a different color; the blending of the color in-
side each triangle corresponds to the smooth error variation
inside each patch.

to the graphics hardware in the most efficient way. There-
fore, each bintree node contains a small chunk (in the range
of 256..8k) of contiguous well packed tri-stripped triangles.
To ensure the correct matching between triangular patches,
we exploit the HTR property that each triangle can correctly
connect either to: triangles of its same level; triangles of the
next coarser level through the longest edge; and triangles of
the next finer level through the two shortest edges. The above
property works well for triangles, but, switching from trian-
gles to small patches, the correct connectivity along borders
of different simplification level patches is not directly guar-
anteed. This simple edge error property is exploited, as ex-
plained in Sec. 5, to design an out-of-core high quality sim-
plification algorithm that builds each triangular patch so that
the error is distributed as shown in figure 1.c: each triangle of
the bintree represents a small mesh patch with errorek inside
and errorek+1 (the error corresponding to the next more re-
fined level in the bintree) along the two shortest edges. In this
way, each mesh composed by a collection of small patches
arranged as a correct bintree triangulation still generates a
globally correct triangulation.

In Fig. 2 we show an example of these properties. In the
upper part of the figure we show the various levels of a HRT
and each triangle represents a terrain patch composed by
many graphics primitives. Colors correspond to different er-
rors; the blending of the color inside each triangular patch
represents the smooth error variation inside each patch as
shown in Fig. 1.c. When composing these triangular patches
using the HRT consistency rules, the color variation is al-
ways smooth: the triangulation of adjacent patches correctly
matches.

3.1. The texture quadtree

Terrain textures have dimensions which are typically sim-
ilar or larger than the corresponding ones of elevation data.
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Since such a big texture sizes cannot be handled by commod-
ity graphics boards, we need to partition them into chunks
before rendering. Total size also generally exceeds typical
core memory size, hence the texture management unit has to
deal with out-of-core memory handling techniques. These
considerations lead to a multiresolution texture management
technique similar to the one used for geometry.

For efficiency reasons, textures are however best man-
aged as rectangular tiles, as opposed to the triangular ge-
ometric tiles, leading to a tiled texture quadtree instead of
the geometry bintree. If the original image covers the same
region of the elevation data, each texture quadtree element
corresponds to a pair of adjacent geometry bintree elements
(Fig. 3), and descending one level in the texture quadtree
corresponds to descending two levels in the associated pair
of geometry bintrees. This correspondence can be exploited
in the preprocessing step to associate object-space represen-
tation errors to the quadtree levels, and in the rendering step
to implement view-dependent multiresolution texture and
geometry extraction in a single top-down refinement strat-
egy.

Figure 3: A texture quadtree element is associated to a pair
of adjacent geometry bintree elements. View-dependent re-
finement is performed using a combined top-down traversal
of the texture and geometry trees.

3.2. Errors and Bounding Volumes

To easily maintain the triangulation coherence we exploit the
concept of nested/saturated errors, introduced by Pajarola17

that allows to extract a correct set of triangular patches with
a simple stateless visit of the bintree17, 14.
Object space embedded errorObject-space error is inde-
pendent from the metric used, and can be computed directly
from the finest resolution grid, or incrementally from the
patches of the previous level. Once these errors have been
computed, a hierarchy of errors (that respect nesting condi-
tions) can be constructed bottom up. Texture errors are com-
puted from texture features, and are embedded in a corre-
sponding hierarchy by using a structure similar to the one
used for the geometry errors.
Nested bounding volumes hierarchyObject space errors
are view independent, but for the rendering purpose we need
a view dependent hierarchy of errors where nesting condi-
tions are still valid. Thus, a tree of nested volumes is also
built during the preprocessing, with properties very similar
to the two error rules: 1) bounding volume of a patch in-
clude all children bounding volumes; 2) two patches adja-

cent along hypotenuse must share the same bounding vol-
ume which encloses both. These bounding volumes are used
to compute screen space errors and also for view frustum
culling (Fig. 4).

Figure 4: The nested sphere hierarchy is used for refinement
and view culling (left). Screen space error is the quantity that
drives view-dependent refinement (right).

4. Top-down view-dependent refinement and rendering

The goal of the multiresolution rendering component is to
efficiently extract and render a textured mesh with a small
number of triangles and an associated coarse texture, which
should be a good approximation of the original, dense mesh
for the given view. The algorithm is based on a combined
top-down traversal of the texture and geometry trees, that im-
plicitly guarantees mesh continuity, manages large terrains
datasets through out-of-core paging and data layout tech-
niques, and is designed to fully exploit the rendering ca-
pabilities of modern graphics accelerators through batched
primitive rendering.

4.1. Screen space error

View-dependent refinement is driven by screen space error.
Screen space error is derived at run time from a patch bound-
ing volume and its object-space geometry and texture errors;
it adopts a monotonic projective transformation to preserve
the error nesting conditions. This approach, that supports
variable resolution data extraction with a stateless visit of
the hierarchy, is similar to14. In our case, however, nested
errors and bounding volumes are associated to the patch hier-
archy, rather than the vertex hierarchy, and we have to com-
bine the geometry error with the texture error. In our current
code, we obtain a consistent upper bound on screen space
error by measuring the apparent size of a sphere centered
at the patch bounding volume point closest to the viewpoint
and having radius equal to the maximum between the tex-
ture and the geometry object space errors (see figure 4). The
refinement condition, once the closest point from the view-
point is found, requires only one multiplication to check if
errorsphereradius>errorthreshold*distance.
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proc refine ( V, tex_tree , geo_tree1 , geo_tree2 )

B := bounding_volume ( geo_tree1 )

if visible ( V, B)

if view_error ( V, B, obj_error ( tex_tree )) > eps

for each i in { i_SE , i_SW , i_NW, i_NE }

refine ( V,

child ( tex_tree , i ),

top_grand_child ( geo_tree1 , geo_tree2 , i ),

bottom_grand_child ( geo_tree1 , geo_tree2 , i ))

end for

else

bind_texture ( tex_tree )

define_texcoords ( tex_tree )

geo_parent_refine ( V, tex_tree , parent ( geo_tree1 ))

geo_parent_refine ( V, tex_tree , parent ( geo_tree2 ))

end if

end if

end proc

proc geo_parent_refine ( V, tex_tree , geo_tree_parent )

B := bounding_volume ( geo_tree_parent )

if view_error ( V, B, obj_error ( geo_tree_parent )) > eps

geo_refine ( V, child ( geo_tree , 0))

geo_refine ( V, child ( geo_tree , 1))

else

enable_clipping ( tex_tree )

geo_render ( geo_tree_parent )

disable_clipping

end if

end proc

proc geo_refine ( V, geo_tree )

B := bounding_volume ( geo_tree )

if visible ( V, B)

if view_error ( V, B, obj_error ( geo_tree )) > eps

geo_refine ( V, child ( geo_tree , 0))

geo_refine ( V, child ( geo_tree , 1))

else

geo_render ( geo_tree )

end if

end if

end proc

Figure 5: View-dependent refinement.Variable resolution
textures and geometry are extracted with a combined state-
less visit of texture quadtree and geometry bintrees.

4.2. Combined texture and geometry traversal

Having defined a criterion for view-dependent refinement,
we now summarize the algorithm for top-down selective re-
finement and on-the-fly textured rendering.

The refinement procedure (Fig. 5) starts at the top-level
of the texture and geometry trees and recursively visits the
nodes until the screen space texture error becomes accept-
able. While descending the texture quadtree, corresponding
triangle patches in the two geometry bintree are identified
and selected for processing. Once the texture is considered
detailed enough, texture refinements stops. At this point, the
texture is bound and the OpenGL texture matrix is initial-
ized to define the correct model to texture transformation.
Then, the algorithm continues refining the two geometry bin-
trees until the screen space geometry error becomes accept-
able and the associated patch can thus be sent to the graph-
ics pipeline. Each required texture is therefore bound only

once, and all the geometry data covered by that square is
then drawn, avoiding unnecessary context switches and min-
imizing host to graphics bandwidth requirement.

Since a one level refinement step in the texture quadtree
corresponds to two refinement steps into the geometry bin-
tree, all even geometry levels are skipped during the texture
refinement step, therefore possibly missing a correct geome-
try subdivision. To avoid introducing cracks, after the texture
is bound, the algorithm starts geometry refinement from the
parent patches of those selected by the texture refinement
step, since the error nesting rules ensure that the correct ge-
ometry levels cannot be above that level (see figure 6). If par-
ent patches meet the error criterion, they are rendered using
clipping planes to restrict their extent to that of the selected
texture; otherwise, geometry refinement continues normally,
descending in the geometry bintree. In order to load balance
the graphics pipeline, clipping geometry outside the current
texture domain is done at the pixel level, using fragment
kill operations. Rendering twice the same patch at the par-
ent level uses the same number of triangles of the standard
solution of forcing a refinement step, but requires half of the
graphics memory to store vertex data and it can be imple-
mented in a stateless refinement framework.

Figure 6: Texture continuity.Top: error nesting rules force
neighboring texture patches to differ by at most one level.
Bottom: to ensure continuity, geometry refinement starts
from the even geometry level above the selected texture.

View frustum culling is easily done as part of the recursive
refinement, exploiting the nested bounding volumes. Since a
patch bounding volume contains all the geometry of a given
subtree, recursion can stop without rendering whenever the
bounding volume is detected as invisible. Since the structure
is patch based, there is no need to handle the artifacts gen-
erated by partially visible triangles typical of vertex based
structures9, 14.

4.3. Memory management

Time-critical rendering of large terrain datasets requires real-
time management of huge amounts of data. Moving data
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from the storage unit to main memory and to the graphics
board is often the major bottleneck.

Host to GPU communication To take advantage of spa-
tial and temporal coherency, it is worth to spend some CPU
time to build an optimal rendering representation for each
patch, that can be efficiently reused on subsequent frames,
instead of using direct rendering each time. This is the only
way to harness the power of current graphics architectures,
that heavily rely on extensive on board data caching. With
BDAM, a memory manager based on a simple LRU strategy
explicitly manages graphics board memory. Texture data is
used to build OpenGL texture objects, and geometry data is
written directly to graphics memory using the OpenGL Ver-
tex Array Range extension. The primitive geometric element
is a patch composed of multiple triangles, that is heavily
optimized during pre-processing using cache-coherent tri-
stripping. Since we use an indexed representation, the post-
trasform-and-lighting cache of current graphics architectures
is fully exploited.

Figure 7: Texture and Geometry data are stored using
space-filling indexing schemes to improve memory co-
herency.

Out-of-core paging and data layout Since the BDAM al-
gorithm is designed to work in a stand-alone PC (as opposed
to a distributed, network-based solution), we assume that all
data is stored on local secondary storage unit. Our approach,
similarly to Lindstrom and Pascucci’s14, optimizes the data
layout to improve memory coherency and accesses external
texture and geometry data through system memory mapping
functions. To minimize the number of page faults, data stor-
age order has to reflect traversal order. All data is therefore
sorted by level, then by patches. The patch order inside a
level is defined through two space filling curves, (one for ge-
ometry and one for texture), which achieve good memory
locality. Figure 7 illustrates the indexing schemes used for
data layout. To improve memory locality further, data files
are subdivided into astructure fileand adata file. The struc-
ture files contains for each node information on the relative
patch error and the location of the data stored into the data
file. The data file contains all the information required by the
top-down traversal algorithm (error, bounding volume, loca-
tion of information in the associated data file), while the data
file contains the information required for rendering the ob-
ject (image data in for the textures, connectivity and vertex
data for the patches). As we let the operating system manage

the external memory (by means of memory mapping) the
finite size of the address space introduces a data size lim-
itation. On a 32 bit architecture, 4GB is the address space
limit, but operating systems such as Windows or Linux typ-
ically reserve less than 2GB for memory mapped segments.
Our solution is to overcome this limitation by mapping only
a segment of the data file at a time, moving the mapped seg-
ment as needed. This only applies to the data files, since
structure files are small enough to be always maintained in
core.

5. Building a BDAM

In this section we describe how a BDAM can be constructed
starting from a regular terrain height field. The technique
here presented to build the geometry bintrees is quite gen-
eral. The simplification algorithm used to generate the vari-
ous patches could be replaced with any other technique that
is able to remove/insert a given number of vertices and to
constrain the simplification to avoid removal of some ver-
tices. For example, the approach presented in the next para-
graphs could be easily reversed from simplification to refine-
ment and by using the classical greedy Delaunay-insertion
algorithm6.

5.1. High Quality Geometric Simplification

The hierarchical structure described in Section 3 is built
bottom-up, level by level. We refer to figure 8 to explain the
construction of levell i from level l i+1. As a first step, all
the vertices laying onto triangles’ longest edges are marked
as non-modifiable, which means that they will still exist in
the next level of the hierarchy. As you can see, this marking
splits the mesh into a set of square shaped sub-meshes (bold
gray lines), each one made of four triangular patches joined
along their shortest edges. After a square-shaped sub-mesh
is simplified, it is split along a diagonal into two triangular
patches. Thissplitting diagonal(lines in black) is taken so
that so that each of the two triangular patches corresponds to
a triangle at the next level of the bintree hierarchy. The sim-
plification is targeted to always halves the number of vertices
of the sub-mesh, thus the size of patches is approximatively
constant everywhere in the hierarchy.

In the right part of figure 2 we show an example of a
mesh that can be assembled by using the patches contained
in the bintree nodes and built following the process described
above. Note that each triangular patch has the longest edge
of the error (color) of the previous level, hence the error dis-
tribution of each patch, shown in figure 2, is respected. The
generality of this approach allows to use high quality feature
preserving simplification techniques (e.g. quadric based7 or
Delaunay insertion6) which produce, with the same number
of triangles, a much better terrain approximation than con-
strained bintree techniques4.

Placement of the vertices on the border of the quadtree
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Figure 8: Construction of a BDAM through a sequence of simplification and marking steps. Each triangle represents a terrain
patch composed by many triangles. Colors correspond to different errors as in Fig 2.

cells needs extra care to ensure compatibility with textures
boundaries. Their projection must lie exactly on the bound-
ary of the patch triangular shape resulting from the regular
quadtree subdivision of the terrain. This results in a constrain
on the simplification of a region: no triangle must cross the
splitting diagonal if this diagonal is vertical or horizontal in
texture space. This constrain can be dropped when building a
BDAM where when texture are not used: the patches result-
ing from the splitting will have unconstrained zigzag borders
instead of straight ones.

During the construction we save each patch into an in-
termediate format containing vertices, border vertices and
faces. Finally we proceed to convert each level into the final
format. This consists of reordering all the patches to maxi-
mize data locality (as described in section 4.1), building tri-
angle strips and quantizing vertices coordinates to 16 bit, up-
dating errors in order to satisfy the nesting conditions.

5.2. Simplification algorithm

The task of simplifying a surface mesh is a well known prob-
lem. We employ an edge collapse simplification driven by
the well known quadric error metric7 with few minor mod-
ifications. With respect to the classical formulation our sim-
plification algorithm must respect the constraints on the bor-
der vertices and on the diagonal specified in Section 5.1. The
preservation of the marked vertices is trivially satisfied by
"locking" such vertices and discarding those collapses which
would involve them. In the cases in which no new triangle
must cross the splitting diagonal, we simply force the ver-
tices laying in the diagonal and involved in an edge collapse
to stay in the vertical plane containing the patch’s diagonal:
this means that the minimization of the quadric error is done
only with respect to that plane.

We also introduce two small variations in the process that
improve the output mesh quality. The use ofdihedral planes
to build the quadric and a smoothing step at the end of sim-
plification.
Dihedral planes In flat areas, the faces sharing a vertex lay
(almost) in the same plane, and in this plane the quadric er-
ror value is constant and minimal. This means that the ver-

tex resulting from the collapse of two other vertices could
be positioned everywhere in the plane, producing no error.
One way to cope with this problem is to add a measure of
the quality of the triangles generated by the collapses, such
as area and/or aspect ratio. Conversely we prefer to work on
the definition of the initial quadric error able to work also in
flat areas. We add supplementary planes to build the initial
vertex quadrics: for each edgee we add the plane includ-
ing e and with normalp = e× n , wheren is the average
normal of the two triangles sharinge, as a contribution to
the quadric construction of the vertices ofe. This contribu-
tion is scaled by a factor proportional to the dihedral angle
between the two faces sharing the edgee (Fig. 9). In other
words, the quadric error associated with a vertex will take
account not only of the distance of that vertex from from the
planes of the triangles adjacent to it, but also the distance
from these dihedral planes. We have simply added a con-
tribute from the lower dimension quadrics computed in the
tangent space, which can be easily seen taking a completely
flat mesh. In this case the only contribution to the quadrics
comes from the dihedral planes, which are all vertical and
correspond to the 2D quadric.
Smoothing A final step of Laplacian smoothing is used to
improve the triangle quality, with the constraint that a vertex
is actually moved into its "smoothed" position if and only if
the quadric error associated with the vertex does not worsen
over a given threshold.
Evaluating the error The error of the simplified mesh is
taken as the maximum vertical difference with the origi-
nal one. To perform this computation quickly by exploiting
graphics hardware, we render under orthographic projection
the original and simplified meshes and evaluate the differ-
ence among the corresponding depth buffers.

5.3. Out-of-core Texture LOD construction

In the preprocessing step, textures are converted into a hier-
archical structure containing the original image at different
levels of detail. The quadtree of texture tiles is obtained by a
bottom-up filtering process of the original image, optionally
followed by a compression to the DXT1 format. To ensure
texture continuity, texture tiles at a given level overlap by
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Figure 9: The plane added by edge e is weighted with the
cosine of dihedral angleα

a one texel border. The object space error of a given tex-
ture tile is the size, expressed in original image texels, of the
biggest feature that disappears when replacing the original
image data with the filtered one. A more pessimistic object
space error, used in our current implementation, is just the
magnification factor of the given texture tile. As for geom-
etry, error nesting is ensured by a final bottom-up pass that
combines all object space errors of neighboring and descen-
dant tiles. The entire process is easy to implement out-of-
core, since the filtering and compression process is done in-
dependently for each tile, and the connectivity information
for error propagation has a negligible size even when explic-
itly stored.

6. Results

An experimental software library and a terrain rendering ap-
plication supporting the BDAM technique have been imple-
mented and tested on Linux and Windows NT. The results
were collected on a Linux PC with two AMD Athlon MP
1600MHz processors, 2GB RAM, and a NVIDIA GeForce4
Ti4600 graphics board.

The test case discussed in this paper is a terrain dataset
over the Puget Sound area in Washington state, which
is. The dataset is freely available at various resolutions
from http://www.cc.gatech.edu/projects/large_models/ps.html

and is now a standard benchmark for terrain rendering appli-
cations. We used a 8,193x8,193 elevation grid with 20 meter
horizontal and 0.1 meter vertical resolution. On this terrain,
we mapped a 16,384x16,384 RGB texture.

6.1. Preprocessing

The input dataset was transformed by our texture and ge-
ometry processing tools. For textures, we used a tile size of
512x512 pixels, which produced a 9 level quadtree and com-
pressed colors using the DXT1 format. Texture preprocess-
ing, including error propagation, took roughly two hours and
produced a structure occupying 178 MB on disk. Processing
time is dominated by texture compression. For geometry, we
generated two 19 levels bintrees, with leaf nodes containing
triangular patches of 16x16 vertex side at full resolution and

interior nodes with a constant vertex count of 200. Geom-
etry preprocessing, that included optimized tristrip genera-
tion, exhibits the following times and memory requirements:

Size Tris Time (h:m:s) Output size RAM

1K x 1K 2M 6:35 2 x 14MB 9MB
4K x 4K 32M 1:42:33 2 x 196MB 30MB
8K x 8K 128M 6:39:23 2 x 765MB 115MB

For the sake of comparison, Hoppe’s view dependent pro-
gressive meshes10, that, like BDAMs, support unconstrained
triangulation of terrains, need roughly 380MB of RAM and
uses 190MB of disk space to build a multiresolution model
of a simplified version of 7.9M triangles of the Puget Sound
dataset. Preprocessing times are similar to BDAM times. By
contrast, SOAR15 geometry data structure, which is based
on a hierarchy of right triangles, takes roughly 3.4 GBon
disk for the processed data set, but is much faster to com-
pute since the subdivision structure is data independent. The
version of SOAR used in this comparison is v1.11, available
from http://www.cc.gatech.edu/ ∼lindstro/software/soar/ .

6.2. View-dependent Refinement

We evaluated the performance of the BDAM technique on a
number of flythrough sequences over the Puget Sound area.
The quantitative results presented here were collected during
a 50 seconds high speed fly-over of the data set with a win-
dow size of 800x600 pixels and a screen tolerance of 1.0
pixel. The qualitative performance of our view-dependent
refinement is further illustrated in an accompanying video,
showing the live recording of the analyzed flythrough se-
quence (Fig. 10). During the entire walkthrough, the resident
set size of the application is maintained at roughly 160 MB,
i.e. less than 10% of data size, demostrating the effectiveness
of out-of-core data management.

Figure 11(a) illustrates the rendering performance of the
application. We were able to sustain an average rendering
rate of roughly 22 millions of textured triangles per second,
with peaks exceeding 25 millions, which are close to the
peak performance of the rendering board (Fig. 11(a) left).
By comparison, on the same machine, SOAR peak perfor-
mance was measured at roughly 3.3 millions of triangles
per second, even though SOAR was using a smaller single
resolution texture of 2Kx2K texels. The increased perfor-
mance of the BDAM approach is due to the larger granular-
ity of the structure, that amortizes structure traversal costs
over many graphics primitives, reduces AGP data trans-
fers through on-board memory management and fully ex-
ploits the post-transform-and-lighting cache with optimized
indexed triangle strips. The time overhead of BDAM struc-
ture traversal, measured by repeating the test without exe-
cuting OpenGL calls, is only about 20% of total frame time
(Fig. 11(c)), demonstrating that we are GPU bound even for
large data sets.

Rendered scene granularity is illustrated in figure 11(b):
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(a) Frame 400 (b) Frame 1751

Figure 10: Selected flythrough frames.Screen space error tolerance set to 1.0 pixels.
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(b) Rendered complexity per frame
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(c) BDAM overhead per frame

Figure 11: Performance Evaluation.

even though the peak complexity of the rendered scenes ex-
ceeds 350K triangles and 20 M texels per frame, the number
of rendered graphics primitives per frame remains relatively
small, never exceeding 1000 patches and 64 texture blocks
per frame. Since we are able to render such complex scenes
at high frame rates (60 to 240 Hz for the entire test path,
Fig. 11(b)), it is possible to use very small pixel threshold,
virtually eliminating popping artifacts, without resorting to
costly geomorphing features. Moreover, since TINs are used
as basic building blocks, triangulation can be more easily
adapted to high frequency variations of the terrain, such as
cliffs, than techniques based on regular subdivision meshes
(Fig. 12).

7. Conclusions

We have presented an efficient technique for out-of-core ren-
dering and management of large textured terrain surfaces.
The technique, called Batched Dynamic Adaptive Meshes
(BDAM), is based on a paired tree structure: a tiled quadtree
for texture data and a pair of bintrees of small triangular
patches for the geometry. These small patches are TINs
and are constructed and optimized off-line with high qual-
ity simplification and tristripping algorithms. Hierarchical
view frustum culling and view-dependendent texture and ge-
ometry refinement is performed at each frame with a state-
less traversal algorithm that renders a continuous adaptive
terrain surface by assembling out-of-core data. Thanks to
the batched CPU/GPU communication model, the proposed
technique is not processor intensive and fully harnesses the
power of current graphics hardware. Both preprocessing and

c© The Eurographics Association and Blackwell Publishers 2003.



Cignoni and Ganovelli and Gobbetti and Marton and Ponchio and Scopigno / BDAM!

(a) BDAM approximation with 14K triangles (b) SOAR approximation with 14K triangles

Figure 12: Quality Evaluation.TINs can easily adapt to high frequency variations of the terrain such as cliffs, while many
subdivision levels are needed for regular subdivision meshes, that spend a large fraction of the triangle budget in edge following.

rendering exploit out of core techniques to be fully scalable
and be able to manage large terrain datasets.
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